Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization | Computational Optimization and Applications Skip to main content
Log in

Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider general nonlinear programming problems with cardinality constraints. By relaxing the binary variables which appear in the natural mixed-integer programming formulation, we obtain an almost equivalent nonlinear programming problem, which is thus still difficult to solve. Therefore, we apply a Scholtes-type regularization method to obtain a sequence of easier to solve problems and investigate the convergence of the obtained KKT points. We show that such a sequence converges to an S-stationary point, which corresponds to a local minimizer of the original problem under the assumption of convexity. Additionally, we consider portfolio optimization problems where we minimize a risk measure under a cardinality constraint on the portfolio. Various risk measures are considered, in particular Value-at-Risk and Conditional Value-at-Risk under normal distribution of returns and their robust counterparts under moment conditions. For these investment problems formulated as nonlinear programming problems with cardinality constraints we perform a numerical study on a large number of simulated instances taken from the literature and illuminate the computational performance of the Scholtes-type regularization method in comparison to other considered solution approaches: a mixed-integer solver, a direct continuous reformulation solver and the Kanzow–Schwartz regularization method, which has already been applied to Markowitz portfolio problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adam, L., Branda, M.: Nonlinear chance constrained problems: optimality conditions, regularization and solvers. J. Optim. Theory Appl. 170(2), 419–436 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, A., Eldar, Y.C.: Sparsity constrained optimization: optimality conditions and algorithms. SIAM J. Optim. 23, 1480–1509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43, 1–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsimas, D., Takeda, A.: Optimizing over coherent risk measures and non-convexities: a robust mixed integer optimization approach. Comput. Optim. Appl. 62, 613–639 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74, 121–140 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Bonami, P., Lejeune, M.A.: An exact solution approach for integer constrained portfolio optimization problems under stochastic constraints. Oper. Res. 57(3), 650–670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 21, 359–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bucher, M., Schwartz, A.: Second order optimality conditions and improved convergence results for a Scholtes-type regularization for a continuous reformulation of cardinality constrained optimization problems. Research Report. https://arxiv.org/abs/1709.01368 (2017)

  10. Burdakov, O.P., Kanzow, Ch., Schwartz, A.: On a reformulation of mathematical programs with cardinality constraints. In: Gao, D.Y., Ruan, N., Amd, W., Xing, X. (eds.), Proceedings of the 3rd World Congress of Global Optimization (Huangshan, China, 2013), Springer, New York, pp. 121–140 (2015)

  11. Burdakov, O.P., Kanzow, Ch., Schwartz, A.: Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 26(1), 397–425 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Červinka, M., Kanzow, Ch., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. Ser. A 160(1), 353–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cesarone, F., Scozzari, A., Tardella, F.: A new method for mean-variance portfolio optimization with cardinality constraints. Ann. Oper. Res. 205, 213–234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, T.-J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimization. Comput. Oper. Res. 27, 1271–1302 (2000)

    Article  MATH  Google Scholar 

  15. Chen, L., He, S., Zhang, S.: Tight bounds for some risk measures, with applications to robust portfolio selection. Oper. Res. 59(4), 847–865 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chopra, V.K., Ziemba, W.T.: The effect of errors in means, variances and covariances on optimal portfolio choice. J. Portf. Manag. 19(2), 6–11 (1993)

    Article  Google Scholar 

  17. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Demiguel, A.V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16, 587–609 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. DeMiguel, V., Garlappi, L., Nogales, J., Uppal, R.: A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Manag. Sci. 55(5), 798–812 (2009)

    Article  MATH  Google Scholar 

  20. DeMiguel, V., Nogales, F.J.: Portfolio selection with robust estimation. Oper. Res. 57(3), 560–577 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Lorenzo, D., Liuzzi, G., Rinaldi, F., Schoen, F., Sciandrone, M.: A concave optimization-based approach for sparse portfolio selection. Optim. Methods Softw. 27, 983–1000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dolan, E., Moré, J.: Mathematical programming: benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51(4), 543–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fabozzi, F.J., Huang, D., Zhou, G.: Robust portfolios: contributions from operations research and finance. Ann. Oper. Res. 176(1), 191–220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fastrich, B., Paterlini, S., Winkler, P.: Constructing optimal sparse portfolios using regularization methods. Comput. Manag. Sci. 12(3), 417–434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Oper. Res. Lett. 35, 181–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frangioni, A., Gentile, D.C.: Mean-variance problem with minimum buy-in constraints, data and documentation. http://www.di.unipi.it/optimize/Data/MV.html

  28. Feng, M., Mitchell, J.E., Pang, J.-S., Shen, X., Wächter, A.: Complementarity formulation of $ \ell _0 $-norm optimization problems. Technical Report, Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, USA, September (2013)

  29. Gao, J.J., Li, D.: Optimal cardinality constrained portfolio selection. Oper. Res. 61(3), 745–761 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gill, P.E., Murray, W., Saunders, W., Wong, E.: SNOPT 7.5 user’s manual. CCoM Technical Report, vol. 15-3, Center for Computational Mathematics, University of California, San Diego

  31. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gurobi Optimization, Inc.: Gurobi optimizer reference manual. http://www.gurobi.com (2016)

  34. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137, 257–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kadrani, A., Dussault, J.-P., Benchakroun, A.: A new regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 20, 78–103 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kanzow, Ch., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convergence properties. SIAM J. Optim. 23, 770–798 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kanzow, Ch., Schwartz, A.: The price of inexactness: convergence properties of relaxation methods for mathematical programs with complementarity constraints revisited. Math. Oper. Res. 40(2), 253–275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kim, J., Kim, W., Fabozzi, F.: Recent developments in robust portfolios with a worst-case approach. J. Optim. Theory Appl. 161(1), 103–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Levy, H. (ed.): Stochastic Dominance: Investment Decision Making Under Uncertainty. Springer, New York (2006)

    MATH  Google Scholar 

  40. Lin, G.H., Fukushima, M.: A modified relaxation scheme for mathematical programs with complementarity constraints. Ann. Oper. Res. 133, 63–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  42. Markowitz, H.M.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  43. Michaud, R.O.: The Markowitz optimization enigma: Is optimized optimal? Finance Anal. J. 45(1), 31–42 (1989)

    Article  Google Scholar 

  44. Murray, W., Shek, H.: A local relaxation method for the cardinality constrained portfolio optimization problem. Comput. Optim. Appl. 53, 681–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Outrata, J.V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  46. Paç, A.B., Pınar, M.Ç.: Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity. TOP 22, 875–891 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pardalos, P.M., Rodgers, G.P.: Computing aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 144, 45–131 (1990)

    MATH  Google Scholar 

  48. Pflug, G., Wozabal, D.: Ambiguity in portfolio selection. Quant. Finance 7, 435–442 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Popescu, I.: Robust mean-covariance solutions for stochastic optimization. Oper. Res. 55(1), 98–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)

    Article  Google Scholar 

  51. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  52. Ruiz-Torrubiano, R., García-Moratilla, S.: Optimization problems with cardinality constraints. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Optimization, pp. 105–130. Springer, Berlin (2010)

    Chapter  Google Scholar 

  53. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shapiro, A.: Topics in Stochastic Programming. CORE Lecture Series, Université catholique de Louvain, Louvain-la-nueve (2011)

  55. Shaw, D.X., Liu, S., Kopman, L.: Lagrangian relaxation procedure for cardinality-constrained porfolio optimization. Optim. Methods Softw. 23, 411–420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Steffensen, S., Ulbrich, M.: A new regularization scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 20, 2504–2539 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sun, X., Zheng, X., Li, D.: Recent advances in mathematical programming with semi-continuous variables and cardinality constraint. J. Oper. Res. Soc. China 1, 55–77 (2013)

    Article  MATH  Google Scholar 

  58. Tütüncü, R.H., Koening, M.: Robust asset allocation. Ann. Oper. Res. 132, 157–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zheng, X., Sun, X., Li, D., Sun, J.: Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach. Comput. Optim. Appl. 59(1), 379–397 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhu, S., Fukushima, M.: Worst-case conditional value-at-risk with application to robust portfolio management. Oper. Res. 57(5), 1155–1168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Martin Branda and Michal Červinka would like to acknowledge the support of the Czech Science Foundation (GA ČR) under the Grants GA13-01930S, GA15-00735S and GA18-05631S. The work of Alexandra Schwartz and Max Bucher is supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt. The authors would like to express their gratitude to the anonymous referees for their valuable comments and suggestions, which led to many improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Branda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branda, M., Bucher, M., Červinka, M. et al. Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization. Comput Optim Appl 70, 503–530 (2018). https://doi.org/10.1007/s10589-018-9985-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-9985-2

Keywords

Navigation