Abstract
In this paper, we consider the linearly constrained multiobjective minimization, and we propose a new reduced gradient method for solving this problem. Our approach solves iteratively a convex quadratic optimization subproblem to calculate a suitable descent direction for all the objective functions, and then use a bisection algorithm to find an optimal stepsize along this direction. We prove, under natural assumptions, that the proposed algorithm is well-defined and converges globally to Pareto critical points of the problem. Finally, this algorithm is implemented in the MATLAB environment and comparative results of numerical experiments are reported.






Similar content being viewed by others
References
Luc, D.T.: Theory of Vector Optimization. Lectures Notes in Economics and Mathematical Systems, vol. 319. Springer-Verlag, Berlin (1989). https://doi.org/10.1007/978-3-642-50280-4
Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, Berlin (2012)
Ehrgott, M.: Multicriteria Optimization, vol. 491. Springer, Berlin (2013)
Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602 (2009)
Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479 (2000)
Drummond, L.G., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5 (2004)
El Moudden, M., El Ghali, A.: Multiple reduced gradient method for multiobjective optimization problems. Numer. Algorithms (2018). https://doi.org/10.1007/s11075-018-0483-5
Wolfe, P.: The reduced gradient method, Rand Document. Santa Monica, CA (1962)
Huard, P.: Un algorithme général de gradient réduit. Bulletin de la Direction des Etudes et Recherches, EDF, Série C 2, 91 (1982)
Luenberger, D., Ye, Y.: Linear and Nonlinear Programming, vol. 2. Springer, Berlin (1984)
Baushev, A., Morozova, E.: A Multidimensional Bisection Method for Minimizing Function Over Simplex. Lectures Notes in Engineering and Computer Science, vol. 2, pp. 801–803 (2007)
García-Palomares, U.M., Burguillo-Rial, J.C., González-Castano, F.J.: Explicit gradient information in multiobjective optimization. Oper. Res. Lett. 36(6), 722 (2008)
Miglierina, E., Molho, E., Recchioni, M.: An interior point method for linearly constrained multiobjective optimization based on suitable descent directions. In Recent Developments on Mathematical Programming and Applications, (Pisa, 05-05 June 2009), Aracne editrice, Roma, pp. 89–102 (2009)
Benson, H., Boger, G.: Outcome-space cutting-plane algorithm for linear multiplicative programming. J. Optim. Theory Appl. 104(2), 301 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
El Moudden, M., El Ghali, A. A new reduced gradient method for solving linearly constrained multiobjective optimization problems. Comput Optim Appl 71, 719–741 (2018). https://doi.org/10.1007/s10589-018-0023-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-018-0023-1