Abstract
We study the transient optimization of gas transport networks including both discrete controls due to switching of controllable elements and nonlinear fluid dynamics described by the system of isothermal Euler equations, which are partial differential equations in time and 1-dimensional space. This combination leads to mixed-integer optimization problems subject to nonlinear hyperbolic partial differential equations on a graph. We propose an instantaneous control approach in which suitable Euler discretizations yield systems of ordinary differential equations on a graph. This networked system of ordinary differential equations is shown to be well-posed and affine-linear solutions of these systems are derived analytically. As a consequence, finite-dimensional mixed-integer linear optimization problems are obtained for every time step that can be solved to global optimality using general-purpose solvers. We illustrate our approach in practice by presenting numerical results on a realistic gas transport network.
Similar content being viewed by others
Notes
We remark that the consideration of flexible nodes is not completely in line with the network model presented in Sect. 2 because \(u \in V_- \) or \(u \in V_+ \) for a node \(u \not \in V_0 \) does not hold anymore for all time steps. However, all required changes in the model are straightforward.
References
LaMaTTO++: A Framework for Modeling and Solving Mixed-Integer Nonlinear Programming Problems on Networks (2017). http://www.mso.math.fau.de/edom/projects/lamatto.html
Altmüller, N., Grüne, L., Worthmann, K.: Instantaneous control of the linear wave equation. In: Proceedings of MTNS (2010)
Antil, H., Hintermüller, M., Nochetto, R., Surowiec, T., Wegner, D.: Finite horizon model predictive control of electrowetting on dielectric with pinning. Interfaces Free Bound. 19(1), 1–30 (2017). https://doi.org/10.4171/IFB/375
Banda, M.K., Herty, M.: Multiscale modeling for gas flow in pipe networks. Math. Methods Appl. Sci. 31, 915–936 (2008). https://doi.org/10.1002/mma.948
Banda, M.K., Herty, M., Klar, A.: Gas flow in pipeline networks. Netw. Heterog. Media 1(1), 41–56 (2006). https://doi.org/10.3934/nhm.2006.1.41
Baumrucker, B., Biegler, L.: MPEC strategies for cost optimization of pipeline operations. Comput. Chem. Eng. 34(6), 900–913 (2010). https://doi.org/10.1016/j.compchemeng.2009.07.012
Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9(2), 601–623 (2011)
Choi, H., Hinze, M., Kunisch, K.: Instantaneous control of backward-facing step flows. Appl. Numer. Math. 31(2), 133–158 (1999). https://doi.org/10.1016/S0168-9274(98)00131-7
Choi, H., Temam, R., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic burgers equation. J. Fluid Mech. 253, 509–543 (1993). https://doi.org/10.1017/S0022112093001880
Coddington, E.A., Carlson, R.: Linear ordinary differential equations. SIAM, Philadelphia (1997)
Domschke, P., Geißler, B., Kolb, O., Lang, J., Martin, A., Morsi, A.: Combination of nonlinear and linear optimization of transient gas networks. INFORMS J. Comput. 23(4), 605–617 (2011). https://doi.org/10.1287/ijoc.1100.0429
Ehrhardt, K., Steinbach, M.C.: KKT systems in operative planning for gas distribution networks. Proc. Appl. Math. Mech. 4(1), 606–607 (2004). https://doi.org/10.1002/pamm.200410284
Ehrhardt, K., Steinbach, M.C., Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R.: Nonlinear optimization in gas networks. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 139–148. Springer, Berlin (2005). https://doi.org/10.1007/3-540-27170-8_11
Feistauer, M.M.: Mathematical methods in fluid dynamics. Pitman monographs and surveys in pure and applied mathematics. Longman Scientific & Technical New York, Harlow, Essex, England (1993). http://opac.inria.fr/record=b1084590
Geißler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with applications in gas network optimization. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg. (2011)
Geißler, B., Kolb, O., Lang, J., Leugering, G., Martin, A., Morsi, A.: Mixed integer linear models for the optimization of dynamical transport networks. Math. Methods Oper. Res. 73(3), 339–362 (2011). https://doi.org/10.1007/s00186-011-0354-5
Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving minlps. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, pp. 287–314. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1927-3_10
Geißler, B., Martin, A., Morsi, A., Schewe, L.: The MILP-relaxation approach. In: Evaluating Gas Network Capacities [32], chap. 6, pp. https://doi.org/10.1137/1.9781611973693.ch6
Geißler, B., Morsi, A., Schewe, L.: A new algorithm for minlp applied to gas transport energy cost minimization. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization: Festschrift for Martin Grötschel, pp. 321–353. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-38189-8_14
Geißler, B., Morsi, A., Schewe, L., Schmidt, M.: Solving power-constrained gas transportation problems using an MIP-based alternating direction method. Comput. Chem. Eng. 82, 303–317 (2015). https://doi.org/10.1016/j.compchemeng.2015.07.005
Geißler, B., Morsi, A., Schewe, L., Schmidt, M.: Solving highly detailed gas transport MINLPs: block separability and penalty alternating direction methods. Tech. rep. (2016). http://www.optimization-online.org/DB_HTML/2016/06/5523.html
Gu, Z., Rothberg, E., Bixby, R.: Gurobi Optimizer Reference Manual, Version 6.5.0 (2015)
Gugat, M.: Boundary controllability between sub- and supercritical flow. SIAM J. Control Optim. 42, 1056–1070 (2003)
Gugat, M., Hante, F.M., Hirsch-Dick, M., Leugering, G.: Stationary states in gas networks. Netw. Heterog. Med. 10(2), 295–320 (2015). https://doi.org/10.3934/nhm.2015.10.295
Gugat, M., Herty, M., Klar, A., Leugering, G., Schleper, V.: Well-Posedness of Networked Hyperbolic Systems of Balance Laws, pp. 123–146. Springer Basel, Basel (2012). https://doi.org/10.1007/978-3-0348-0133-1_7
Gugat, M., Herty, M., Schleper, V.: Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 34(7), 745–757 (2011). https://doi.org/10.1002/mma.1394
Gugat, M., Leugering, G., Wang, K.: Neumann boundary feedback stabilization for a nonlinear wave equation: a strict \(H^2\)-Lyapunov function. Math. Control Relat. Fields 7(3), 419–448 (2017). https://doi.org/10.3934/mcrf.2017015
Hante, F.M., Leugering, G., Martin, A., Schewe, L., Schmidt, M.: Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: from modeling to industrial applications. In: Manchanda, P., Lozi, R., Siddiqi, A.H. (eds.) Industrial Mathematics and Complex systems: Emerging Mathematical Models, Methods and Algorithms, Industrial and Applied Mathematics (2017). https://opus4.kobv.de/opus4-trr154/files/121/isiam-paper.pdf
Herty, M., Kirchner, C., Klar, A.: Instantaneous control for traffic flow. Math. Methods Appl. Sci. 30(2), 153–169 (2007). https://doi.org/10.1002/mma.779
Hinze, M.: Optimal and instantaneous control of the instationary Navier–Stokes equations (2002). https://www.math.uni-hamburg.de/home/hinze/Psfiles/habil_mod.pdf
Hundhammer, R., Leugering, G.: Instantaneous Control of Vibrating String Networks, pp. 229–249. Springer, Berlin (2001). https://doi.org/10.1007/978-3-662-04331-8_15
Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L.: Evaluating gas network capacities. SIAM-MOS series on optimization. SIAM (2015). https://doi.org/10.1137/1.9781611973693
Kostrykin, V., Schrader, R.: Laplacians on metric graphs: eigenvalues, resolvents and semigroups. In: Quantum graphs and their applications, Contemp. Math., vol. 415, pp. 201–225. Amer. Math. Soc., Providence, RI (2006). https://doi.org/10.1090/conm/415/07870
Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modeling, Analysis and Control of Dynamic Elastic Multi-link Structures. Birkhäuser, Boston (1994). https://doi.org/10.1007/978-1-4612-0273-8
Lurie, M.V.: Modeling of Oil Product and Gas Pipeline Transportation. Wiley, New York (2008)
Mahlke, D., Martin, A., Moritz, S.: A simulated annealing algorithm for transient optimization in gas networks. Math. Methods Oper. Res. 66, 99–116 (2007). https://doi.org/10.1007/s00186-006-0142-9
Mahlke, D., Martin, A., Moritz, S.: A mixed integer approach for time-dependent gas network optimization. Optim. Methods Softw. 25(4), 625–644 (2010). https://doi.org/10.1080/10556780903270886
Martin, A., Möler, M.: Cutting planes for the optimisation of gas networks. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 307–330. Springer, Berlin (2005). https://doi.org/10.1007/3-540-27170-8_24
Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105(2), 563–582 (2006). https://doi.org/10.1007/s10107-005-0665-5
Morsi, A.: Solving MINLPs on loosely-coupled networks with applications in water and gas network optimization. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2013)
Osiadacz, A.J.: Different transient flow models—limitations, advantages, and disadvantages (1996). https://www.onepetro.org/conference-paper/PSIG-9606
Osiadacz, A.J.: Steady state optimisation of gas networks. Arch. Min. Sci. 56(3), 335–352 (2011)
Osiadacz, A.J., Bell, D.J.: Steady-State Optimization of Large Gas Networks, pp. 461–467. Springer, Dordrecht (1990). https://doi.org/10.1007/978-94-009-0629-7_47
Osiadacz, A.J., Chaczykowski, M.: Dynamic control for gas pipeline systems. Arch. Min. Sci. 61(1), 69–82 (2016)
Pellegrino, S., Lanzini, A., Leone, P.: Greening the gas network—the need for modelling the distributed injection of alternative fuels. Renew. Sustain. Energy Rev. 70(Supplement C), 266–286 (2017). https://doi.org/10.1016/j.rser.2016.11.243
Pfetsch, M.E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. 30(1), 15–53 (2015). https://doi.org/10.1080/10556788.2014.888426
Ríos-Mercado, R.Z., Borraz-Sánchez, C.: Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl. Energy 147, 536–555 (2015). https://doi.org/10.1016/j.apenergy.2015.03.017
Schmidt, M.: A generic interior-point framework for nonsmooth and complementarity constrained nonlinear optimization. Dissertation, Leibniz-Universität Hannover (2013)
Schmidt, M.: An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness. EURO J. Comput. Optim. 3(4), 309–348 (2015). https://doi.org/10.1007/s13675-015-0039-6. Online first: 09 June 2015
Schmidt, M., Steinbach, M.C., Willert, B.M.: A primal heuristic for nonsmooth mixed integer nonlinear optimization. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 295–320. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-38189-8_13
Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks. Optim. Eng. 16(1), 131–164 (2015). https://doi.org/10.1007/s11081-014-9246-x
Schmidt, M., Steinbach, M.C., Willert, B.M.: An MPEC based heuristic. In: Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L. (Eds.) Evaluating gas network capacities, SIAM-MOS series on Optimization, chap. 9, pp. 163–180. SIAM (2015). https://doi.org/10.1137/1.9781611973693.ch9
Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks: validation and results. Optim. Eng. 17(2), 437–472 (2016). https://doi.org/10.1007/s11081-015-9300-3
Spigler, R., Vianello, M.: Convergence analysis of the semi-implicit Euler method for abstract evolution equations. Numer. Funct. Anal. Optim. 16(5–6), 785–803 (1995)
Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203(2), 345–361 (2007). https://doi.org/10.1016/j.cam.2006.04.018
Zlotnik, A., Chertkov, M., Backhaus, S.: Optimal control of transient flow in natural gas networks. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 4563–4570 (2015). https://doi.org/10.1109/CDC.2015.7402932
Acknowledgements
We acknowledge funding through the DFG SFB/Transregio 154, Subprojects A05, B07, B08, and C03. This research has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government. Finally, we thank Marc Steinbach for the provision of some data that we used for our numerical studies.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gugat, M., Leugering, G., Martin, A. et al. MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems. Comput Optim Appl 70, 267–294 (2018). https://doi.org/10.1007/s10589-017-9970-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-017-9970-1
Keywords
- Mixed-integer optimal control
- Instantaneous control
- Partial differential equations on graphs
- Gas networks
- Mixed-integer linear optimization