Abstract
Assume that a connected undirected edge weighted graph G is given. The Degree Constrained Minimum Spanning Tree Problem (DCMSTP) asks for a minimum cost spanning tree of G where vertex degrees do not exceed given pre-defined upper bounds. In this paper, three exact solution algorithms are investigated for the problem. All of them are Branch-and-cut based and rely on the strongest formulation currently available for the problem. Additionally, to speed up the computation of dual bounds, they all use column generation, in one way or another. To test the algorithms, new hard to solve DCMSTP instances are proposed here. These instances, combined with additional ones taken from the literature, are then used in computational experiments. The experiments compare the new algorithms among themselves and also against the best algorithms currently available in the literature. As an outcome of them, one of the new algorithms stands out on top.
Similar content being viewed by others
References
Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)
Andrade, R.C., Freitas, A.T.: Disjunctive combinatorial branch in a subgradient tree algorithm for the DCMST problem with VNS-Lagrangian bounds. Electron. Notes Discrete Math. 41, 5–12 (2013)
Andrade, R., Lucena, A., Maculan, N.: Using lagrangian dual information to generate degree constrained spanning trees. Discrete Appl. Math. 154(5), 703–717 (2006)
Caccetta, L., Hill, S.P.: A branch and cut method for the degree-constrained minimum spanning tree problem. Networks 37(2), 74–83 (2001)
Craig, G., Krishnamoorthy, M., Palaniswami, M.: Comparison of heuristic algorithms for the degree constrained minimum spanning tree. In: Osman, I.H., Kelly, J.P. (eds.) Metaheuristics: Theory and Applications, pp. 83–96. Kluwer, Boston (1996)
da Cunha, A., Lucena, A.: Lower and upper bounds for the degree-constrained minimum spanning tree problem. Networks 50(1), 55–66 (2007)
Dantzig, G., Fulkerson, D., Johnson, S.: Solution of a large scale traveling salesman problem. Oper. Res. 2(4), 393–410 (1954)
de Souza, M., Martins, P.: Skewed VNS enclosing second order algorithm for the degree constrained minimum spanning tree problem. Eur. J. Oper. Res. 191(3), 677–690 (2008)
Dolan, E.D., Moré, J.J.: Benchmark optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
Fages, J., Lorca, X., Rousseau, L.: Une approche basée sur les contraintes pour résoudre le problème d’arbre recouvrant de coût minimum avec contraintes de degré. In: Actes JFPC, pp. 119–122 (2013)
Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)
Freitas, A.: Árvore de subgradiente com pré-fase VNS-Lagrangeana para o problema da árvore geradora mínima com restrição de grau máximo nos vértices. Master’s thesis, Departamento de Computação, Universidade Federal do Ceará, Fortaleza, CE, Brasil (2011)
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)
Gavish, B.: Topological design of centralized computer networks—formulations and algorithms. Networks 12(4), 355–377 (1982)
Geoffrion, A.: Lagrangean relaxation for integer programming. In: Balinski, M. (ed.) Mathematical Programming Studies, vol. 2, pp. 82–114. Springer, Berlin (1974)
Koch, T., Martin, A.: Solving steiner tree problems in graphs to optimality. Networks 32(3), 207–233 (1998)
Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)
Letchford, A.N., Reinelt, G., Theis, D.O.: A faster exact separation algorithm for blossom inequalities. In: Integer Programming and Combinatorial Optimization, pp. 196–205. Springer, Berlin (2004)
Lucena, A., Resende, M.: Strong lower bounds for the prize collecting steiner problem in graphs. Discrete Appl. Math. 141(1), 277–294 (2004)
Lucena, A., Maculan, N., da Cunha, A.: Relax-and-cut as a preprocessor and warm starter to branch-and-cut. In: Mahjoub, A.R. (ed.) Progress in Combinatorial Optimization, Chap. 5, pp. 171–197. Wiley, New York (2011)
Narula, S., Ho, C.: Degree-constrained minimum spanning tree. Comput. Oper. Res. 7(4), 239–249 (1980)
Obruča, A.K.: Spanning tree manipulation and the travelling salesman problem. Comput. J. 10(4), 374–377 (1968)
Padberg, M., Wolsey, L.: Trees and cuts. N. Holl. Math. Stud. 75, 511–517 (1983)
Prim, R.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)
Ribeiro, C., de Souza, M.: Variable neighborhood search for the degree-constrained minimum spanning tree problem. Discrete Appl. Math. 118(1), 43–54 (2002)
Volgenant, A.: A lagrangean approach to the degree-constrained minimum spanning tree problem. Eur. J. Oper. Res. 39(3), 325–331 (1989)
Zhou, G., Gen, M.: A note on genetic algorithms for degree-constrained spanning tree problems. Networks 30(2), 91–95 (1997)
Acknowledgments
Alexandre Salles da Cunha is partially funded by CNPq Grants 305423/2012-6, 471464/2013-9 and FAPEMIG CEX-PPM-00164-13. Abilio Lucena is partially funded by CNPq Grant 310561/2009-4 and FAPERJ Grant E26-110.552/2010.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bicalho, L.H., da Cunha, A.S. & Lucena, A. Branch-and-cut-and-price algorithms for the Degree Constrained Minimum Spanning Tree Problem. Comput Optim Appl 63, 755–792 (2016). https://doi.org/10.1007/s10589-015-9788-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-015-9788-7