Abstract
The goal is to analyze the semi-smooth Newton method applied to the solution of contact problems with friction in two space dimensions. The primal-dual algorithm for problems with the Tresca friction law is reformulated by eliminating primal variables. The resulting dual algorithm uses the conjugate gradient method for inexact solving of inner linear systems. The globally convergent algorithm based on computing a monotonously decreasing sequence is proposed and its R-linear convergence rate is proved. Numerical experiments illustrate the performance of different implementations including the Coulomb friction law.
Similar content being viewed by others
References
Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991)
Bouchala, J., Dostál, Z., Vodstrčil, P.: Separable spherical constraints and the decrease of a quadratic function in the gradient projection step. J. Optim. Theory Appl. 157, 132–140 (2013)
Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)
Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for non-differentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)
Dostál, Z.: Optimal quadratic programming algorithms: with applications to variational inequalities. SOIA 23. Springer, New York (2009)
Dostál, Z., Horák, D., Kučera, R.: Total FETI: an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun Numer Methods Eng 22, 1155–1162 (2006)
Dostál, Z., Kozubek, T.: An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications. Math. Program. 135, 195–220 (2012)
Dostál, Z., Kozubek, T., Markopoulos, A., Brzobohatý, T., Vondrák, V., Horyl, P.: Scalable TFETI algorithm for two dimensional multibody contact problems with friction. J. Comput. Appl. Math. 235, 403–418 (2010)
Dostál, Z., Kučera, R.: An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints. SIAM J. Optim. 20, 2913–2938 (2010)
Dostál, Z., Schöberl, J.: Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Comput. Optim. Appl. 30, 23–44 (2005)
Facchinei, F., Pang, J.S.: Operations Research and Financial Engineering. Finite-dimensional variational inequalities and complementarity problems, vol. 1, 2. Springer, New York (2003)
Haslinger, J., Kozubek, T., Kučera, R., Peichl, G.: Projected Schur complement method for solving non-symmetric saddle-point systems arising from fictitious domain approach. Numer. Linear Algebra Appl. 14, 713–739 (2007)
Ito, K., Kunisch, K.: Semismooth Newton methods for variational inequalities of the first kind. ESAIM. Math. Modell. Numer. Anal. 30, 41–62 (2010)
Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. At http://www.cs.umn.edu/~metis, University of Minnesota, Minneapolis, MN, (2009)
Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies in Applied Mathematics 8. SIAM, Philadelphia, PA (1988)
Kozubek, T., Markopoulos, A., Brzobohatý, T., Kučera, R., Vondrák, V., Dostál, Z.: MatSol: MATLAB efficient solvers for problems in engineering. http://matsol.vsb.cz/
Kučera, R.: Minimizing quadratic functions with separable quadratic constraints. Optim. Methods Soft. 22, 453–467 (2007)
Kučera, R.: Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints. SIAM J. Optim. 19, 846–862 (2008)
Kučera, R., Kozubek, T., Markopoulos, A.: On large-scale generalized inverses in solving two-by-two block linear systems. Linear Algebra Appl. 438, 3011–3029 (2013)
Kučera, R., Kozubek, T., Markopoulos, A., Haslinger, J., Mocek, L.: Projected Krylov methods for solving non-symmetric two-by-two block linear systems arising from fictitious domain formulations. Adv Electr. Electron. Eng. 12, 131–143 (2014)
Kunisch, K., Stadler, G.: Generalized Newton methods for the 2D-Signorini contact problem with friction in function space. M2AN Math. Model. Numer. Anal. 39, 827–854 (2005)
Hüeber, S., Matei, A., Wohlmuth, B.: Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 29, 70–92 (2007)
Hüeber, S., Stadler, G., Wohlmuth, B.: A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J. Sci. Comput. 30, 572–596 (2008)
Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)
Haslinger, J.: Approximation of the Signorini problem with friction, obeying Coulomb law. Math. Method Appl. 5, 422–437 (1983)
Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV, pp. 313–485. North-Holland, Amsterdam (1996)
Lee, J.: A strategy of finding an initial active set for inequality constrained quadratic programming problems. Submitted to Optim, Methods Soft (2013)
Martinez, J.M., Qi, L.: Inexact Newton methods for solving nonsmooth equations. J. Comput. Appl. Math. 60, 127–145 (1999)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
Scholtes, S.: Introduction to Piecewise Differentiable Equations, Springer Briefs in Optimalization. Springer, Berlin (2012)
Stadler, G.: Semismooth Newton and augmented Lagrangian methods for a simplified friction problem. SIAM J. Optim. 15, 39–62 (2004)
Sun, D., Sun, L.: On NCP-fuctions. Comput. Optim. Appl. 13, 201–220 (1999)
Wohlmuth, B.I.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011)
Acknowledgments
This work was supported by the European Development Fund in the IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070 (RK,AM), by the project Opportunity for young researchers CZ.1.07/2.3.00/30.0016 (AM) and by the Grants P201/12/0671 (RK) and 13-30657P (AM) of the Grant Agency of the Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
(A1) Let \(\mathcal {A}, \mathcal {I}\) be index sets such that \(\mathcal {A}\cup \mathcal {I}= \{1,2,\dots ,2m\}\) and \(\mathcal {A}\cap \mathcal {I}=\emptyset \). We consider the problem
where \(q(\lambda )=\frac{1}{2}\lambda ^\top A \lambda -\lambda ^\top b\) is given by \(A\in {\mathbb {R}}^{2m\times 2m}\) being symmetric, positive definite, \(b\in {\mathbb {R}}^{2m}\), and \(\lambda ^{k+1,0}\in \varLambda \). Recall that \(\varLambda =\{\lambda \in {\mathbb {R}}^{2m}: 0\le \lambda _i, \ |\lambda _{i+m}|\le g_i, \ i\in \mathcal {M}\}\) and \(r=r(\lambda )=A\lambda -b\). We introduce the \(\hbox {CGM}_{ feas}\) with the stopping tolerance tol \(=\) tol \(^{k+1}>0\).
\(\underline{\hbox {CGM}_{\textit{feas}} (A,b,\mathcal {A},\lambda ^{k+1,0}, { tol})}\)
-
(1)
\(r=A\lambda ^{k+1,0}-b\), \(p_\mathcal {A}=r_\mathcal {A}\), \(p_\mathcal {I}=0\), \(j=0\)
-
(2)
while \(\Vert r_\mathcal {A}\Vert >\textit{tol} \, \Vert b\Vert \) and \(\lambda ^{k+1,j}\in \varLambda \)
-
(3)
\(w=Ap\), \(\alpha _{ cg}=r^\top p/p^\top w\)
-
(4)
\(\lambda ^{k+1,j+1}=\lambda ^{k+1,j}-\alpha _{ cg} p\), \(j=j+1\)
-
(5)
\(r=r-\alpha _{ cg} w\), \(\gamma =r_\mathcal {A}^\top w_\mathcal {A}/p^\top w\), \(p_\mathcal {A}=r_\mathcal {A}-\gamma p_\mathcal {A}\)
-
(6)
endwhile
-
(7)
if \(\lambda ^{k+1,j} \in \varLambda \)
-
(8)
return \(\lambda ^{k+1}=\lambda ^{k+1,j}\)
-
(9)
elseif \(\lambda ^{k+1,j} \not \in \varLambda \)
-
(10)
\(\alpha _f=\max \{\alpha \in [0,1): \ \alpha \lambda ^{k+1,j}-(1-\alpha ) \lambda ^{k+1,j-1}\in \varLambda \}\)
-
(11)
return \(\lambda ^{k+1}=\alpha _f \lambda ^{k+1,j}-(1-\alpha _f) \lambda ^{k+1,j-1}\)
-
(12)
endif
Steps (2)–(6) represent the standard CGM loop with added the feasibility test \(\lambda ^{k+1,j}\in \varLambda \) in step (2). Steps (7)–(12) define the result \(\lambda ^{k+1}\in \varLambda \) returned by the \(\hbox {CGM}_{ feas}\). If \(\lambda ^{k+1,j} \not \in \varLambda \), \(\lambda ^{k+1}\) is determined by the largest feasible steplength \(\alpha _f\) in the last conjugate gradient direction. This is called the half step in [5, 7, 9, 10, 18]. Note that the \(\hbox {CGM}_{ feas}\) performs typically few CGM iterations.
(A2) The CGM for solving (7.1) differs from the \(\hbox {CGM}_{ feas}\) as follows: the feasibility test is omitted from step (2) and steps (7)–(12) are replaced by one return step \(\lambda ^{k+1}=\lambda ^{k+1,j}\).
(A3) Let us replace the initial CGM iteration in Step 3.2 of Algorithm GISSNM so that
The first CGM iteration (given by step (4) of the \(\hbox {CGM}_{ feas}\) with \(j=0\)) satisfies:
and
where \(\widetilde{r}_\rho ,\) denotes the reduced gradient (2.14) with \(\alpha =\rho \). Due to the definition of the active/inactive sets (3.8)-(3.12), we have \(P_{\varLambda ,\mathcal {A}} \left( \lambda ^{k} -\rho r\left( \lambda ^{k}\right) \right) = \lambda ^{k}_\mathcal {A}-\rho r_\mathcal {A}\left( \lambda ^{k}\right) \) so that
with \(s_\mathcal {I}(\lambda ^{k})=0\) and \(s_\mathcal {A}(\lambda ^{k})=(\alpha _{ cg}-\rho ) r_\mathcal {A}\left( \lambda ^{k}\right) - \alpha _{ cg} \rho A_{\mathcal {A}\mathcal {I}} \widetilde{r}_{\rho ,\mathcal {I}}\left( \lambda ^{k}\right) \). The following inequalities follows from the CGM:
Under assumptions that \(\rho \le \alpha _{ cg}\) and \(\widetilde{r}_{\rho ,\mathcal {I}}\left( \lambda ^{k}\right) \) is sufficiently small, one can prove:
The following interpretation yields from (7.3) and (7.4): if the initial CGM iteration is given by (7.2), the full projection \(P_{\varLambda } \left( \lambda ^{k}-\rho r \left( \lambda ^{k} \right) \right) \) is inherently included in the SSNM after the first CGM iteration.
Rights and permissions
About this article
Cite this article
Kučera, R., Motyčková, K. & Markopoulos, A. The R-linear convergence rate of an algorithm arising from the semi-smooth Newton method applied to 2D contact problems with friction. Comput Optim Appl 61, 437–461 (2015). https://doi.org/10.1007/s10589-014-9716-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-014-9716-2
Keywords
- Contact problem
- Friction
- Semi-smooth Newton method
- Conjugate gradient method
- Gradient projection
- Convergence rate