The R-linear convergence rate of an algorithm arising from the semi-smooth Newton method applied to 2D contact problems with friction | Computational Optimization and Applications Skip to main content
Log in

The R-linear convergence rate of an algorithm arising from the semi-smooth Newton method applied to 2D contact problems with friction

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The goal is to analyze the semi-smooth Newton method applied to the solution of contact problems with friction in two space dimensions. The primal-dual algorithm for problems with the Tresca friction law is reformulated by eliminating primal variables. The resulting dual algorithm uses the conjugate gradient method for inexact solving of inner linear systems. The globally convergent algorithm based on computing a monotonously decreasing sequence is proposed and its R-linear convergence rate is proved. Numerical experiments illustrate the performance of different implementations including the Coulomb friction law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bouchala, J., Dostál, Z., Vodstrčil, P.: Separable spherical constraints and the decrease of a quadratic function in the gradient projection step. J. Optim. Theory Appl. 157, 132–140 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MATH  Google Scholar 

  4. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for non-differentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dostál, Z.: Optimal quadratic programming algorithms: with applications to variational inequalities. SOIA 23. Springer, New York (2009)

    Google Scholar 

  6. Dostál, Z., Horák, D., Kučera, R.: Total FETI: an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun Numer Methods Eng 22, 1155–1162 (2006)

    Article  MATH  Google Scholar 

  7. Dostál, Z., Kozubek, T.: An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications. Math. Program. 135, 195–220 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dostál, Z., Kozubek, T., Markopoulos, A., Brzobohatý, T., Vondrák, V., Horyl, P.: Scalable TFETI algorithm for two dimensional multibody contact problems with friction. J. Comput. Appl. Math. 235, 403–418 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dostál, Z., Kučera, R.: An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints. SIAM J. Optim. 20, 2913–2938 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dostál, Z., Schöberl, J.: Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Comput. Optim. Appl. 30, 23–44 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Facchinei, F., Pang, J.S.: Operations Research and Financial Engineering. Finite-dimensional variational inequalities and complementarity problems, vol. 1, 2. Springer, New York (2003)

  12. Haslinger, J., Kozubek, T., Kučera, R., Peichl, G.: Projected Schur complement method for solving non-symmetric saddle-point systems arising from fictitious domain approach. Numer. Linear Algebra Appl. 14, 713–739 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ito, K., Kunisch, K.: Semismooth Newton methods for variational inequalities of the first kind. ESAIM. Math. Modell. Numer. Anal. 30, 41–62 (2010)

    Google Scholar 

  14. Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 4.0. At http://www.cs.umn.edu/~metis, University of Minnesota, Minneapolis, MN, (2009)

  15. Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies in Applied Mathematics 8. SIAM, Philadelphia, PA (1988)

  16. Kozubek, T., Markopoulos, A., Brzobohatý, T., Kučera, R., Vondrák, V., Dostál, Z.: MatSol: MATLAB efficient solvers for problems in engineering. http://matsol.vsb.cz/

  17. Kučera, R.: Minimizing quadratic functions with separable quadratic constraints. Optim. Methods Soft. 22, 453–467 (2007)

    Article  MATH  Google Scholar 

  18. Kučera, R.: Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints. SIAM J. Optim. 19, 846–862 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kučera, R., Kozubek, T., Markopoulos, A.: On large-scale generalized inverses in solving two-by-two block linear systems. Linear Algebra Appl. 438, 3011–3029 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kučera, R., Kozubek, T., Markopoulos, A., Haslinger, J., Mocek, L.: Projected Krylov methods for solving non-symmetric two-by-two block linear systems arising from fictitious domain formulations. Adv Electr. Electron. Eng. 12, 131–143 (2014)

    Google Scholar 

  21. Kunisch, K., Stadler, G.: Generalized Newton methods for the 2D-Signorini contact problem with friction in function space. M2AN Math. Model. Numer. Anal. 39, 827–854 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hüeber, S., Matei, A., Wohlmuth, B.: Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 29, 70–92 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hüeber, S., Stadler, G., Wohlmuth, B.: A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J. Sci. Comput. 30, 572–596 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  25. Haslinger, J.: Approximation of the Signorini problem with friction, obeying Coulomb law. Math. Method Appl. 5, 422–437 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV, pp. 313–485. North-Holland, Amsterdam (1996)

    Google Scholar 

  27. Lee, J.: A strategy of finding an initial active set for inequality constrained quadratic programming problems. Submitted to Optim, Methods Soft (2013)

  28. Martinez, J.M., Qi, L.: Inexact Newton methods for solving nonsmooth equations. J. Comput. Appl. Math. 60, 127–145 (1999)

    Article  MathSciNet  Google Scholar 

  29. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  30. Scholtes, S.: Introduction to Piecewise Differentiable Equations, Springer Briefs in Optimalization. Springer, Berlin (2012)

    Book  Google Scholar 

  31. Stadler, G.: Semismooth Newton and augmented Lagrangian methods for a simplified friction problem. SIAM J. Optim. 15, 39–62 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sun, D., Sun, L.: On NCP-fuctions. Comput. Optim. Appl. 13, 201–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wohlmuth, B.I.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Development Fund in the IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070 (RK,AM), by the project Opportunity for young researchers CZ.1.07/2.3.00/30.0016 (AM) and by the Grants P201/12/0671 (RK) and 13-30657P (AM) of the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Kučera.

Appendix

Appendix

(A1) Let \(\mathcal {A}, \mathcal {I}\) be index sets such that \(\mathcal {A}\cup \mathcal {I}= \{1,2,\dots ,2m\}\) and \(\mathcal {A}\cap \mathcal {I}=\emptyset \). We consider the problem

$$\begin{aligned} \bar{\lambda } = \arg \min q(\lambda ) \ \ \ \hbox {subject to } \lambda _\mathcal {I}= \lambda ^{k+1,0}_\mathcal {I}, \end{aligned}$$
(7.1)

where \(q(\lambda )=\frac{1}{2}\lambda ^\top A \lambda -\lambda ^\top b\) is given by \(A\in {\mathbb {R}}^{2m\times 2m}\) being symmetric, positive definite, \(b\in {\mathbb {R}}^{2m}\), and \(\lambda ^{k+1,0}\in \varLambda \). Recall that \(\varLambda =\{\lambda \in {\mathbb {R}}^{2m}: 0\le \lambda _i, \ |\lambda _{i+m}|\le g_i, \ i\in \mathcal {M}\}\) and \(r=r(\lambda )=A\lambda -b\). We introduce the \(\hbox {CGM}_{ feas}\) with the stopping tolerance tol \(=\) tol \(^{k+1}>0\).

\(\underline{\hbox {CGM}_{\textit{feas}} (A,b,\mathcal {A},\lambda ^{k+1,0}, { tol})}\)

  1. (1)

    \(r=A\lambda ^{k+1,0}-b\), \(p_\mathcal {A}=r_\mathcal {A}\), \(p_\mathcal {I}=0\), \(j=0\)

  2. (2)

    while \(\Vert r_\mathcal {A}\Vert >\textit{tol} \, \Vert b\Vert \) and \(\lambda ^{k+1,j}\in \varLambda \)

  3. (3)

          \(w=Ap\), \(\alpha _{ cg}=r^\top p/p^\top w\)

  4. (4)

          \(\lambda ^{k+1,j+1}=\lambda ^{k+1,j}-\alpha _{ cg} p\), \(j=j+1\)

  5. (5)

          \(r=r-\alpha _{ cg} w\), \(\gamma =r_\mathcal {A}^\top w_\mathcal {A}/p^\top w\), \(p_\mathcal {A}=r_\mathcal {A}-\gamma p_\mathcal {A}\)

  6. (6)

    endwhile

  7. (7)

    if \(\lambda ^{k+1,j} \in \varLambda \)

  8. (8)

          return \(\lambda ^{k+1}=\lambda ^{k+1,j}\)

  9. (9)

    elseif \(\lambda ^{k+1,j} \not \in \varLambda \)

  10. (10)

          \(\alpha _f=\max \{\alpha \in [0,1): \ \alpha \lambda ^{k+1,j}-(1-\alpha ) \lambda ^{k+1,j-1}\in \varLambda \}\)

  11. (11)

          return \(\lambda ^{k+1}=\alpha _f \lambda ^{k+1,j}-(1-\alpha _f) \lambda ^{k+1,j-1}\)

  12. (12)

    endif

Steps (2)–(6) represent the standard CGM loop with added the feasibility test \(\lambda ^{k+1,j}\in \varLambda \) in step (2). Steps (7)–(12) define the result \(\lambda ^{k+1}\in \varLambda \) returned by the \(\hbox {CGM}_{ feas}\). If \(\lambda ^{k+1,j} \not \in \varLambda \), \(\lambda ^{k+1}\) is determined by the largest feasible steplength \(\alpha _f\) in the last conjugate gradient direction. This is called the half step in [5, 7, 9, 10, 18]. Note that the \(\hbox {CGM}_{ feas}\) performs typically few CGM iterations.

(A2) The CGM for solving (7.1) differs from the \(\hbox {CGM}_{ feas}\) as follows: the feasibility test is omitted from step (2) and steps (7)–(12) are replaced by one return step \(\lambda ^{k+1}=\lambda ^{k+1,j}\).

(A3) Let us replace the initial CGM iteration in Step 3.2 of Algorithm GISSNM so that

$$\begin{aligned} \lambda _\mathcal {A}^{k+1,0}=\lambda _\mathcal {A}^k, \ \ \ \lambda _\mathcal {I}^{k+1,0}=P_{\varLambda ,\mathcal {I}}(\lambda ^{k}-\rho r(\lambda ^{k})). \end{aligned}$$
(7.2)

The first CGM iteration (given by step (4) of the \(\hbox {CGM}_{ feas}\) with \(j=0\)) satisfies:

$$\begin{aligned} \lambda _\mathcal {I}^{k+1,1}= \lambda _\mathcal {I}^{k+1,0} = P_{\varLambda ,\mathcal {I}}( \lambda ^{k}-\rho r ( \lambda ^{k})) \end{aligned}$$

and

$$\begin{aligned} \lambda _\mathcal {A}^{k+1,1}&= \lambda ^{k+1,0}_\mathcal {A}-\alpha _{ cg} r_\mathcal {A}( \lambda ^{k+1,0}) \\&= \lambda ^{k+1,0}_\mathcal {A}-\alpha _{ cg} ( A_{\mathcal {A}\mathcal {A}}\lambda ^{k+1,0}_\mathcal {A}+ A_{\mathcal {A}\mathcal {I}}\lambda ^{k+1,0}_\mathcal {I}- b_\mathcal {A})\\&= \lambda ^{k}_\mathcal {A}-\alpha _{ cg} ( A_{\mathcal {A}\mathcal {A}}\lambda ^{k}_\mathcal {A}+ A_{\mathcal {A}\mathcal {I}}P_{\varLambda ,\mathcal {I}}(\lambda ^{k}-\rho r(\lambda ^{k}) ) - b_\mathcal {A})\\&= \lambda ^{k}_\mathcal {A}-\alpha _{ cg} (r_\mathcal {A}(\lambda ^{k}) + A_{\mathcal {A}\mathcal {I}} ( P_{\varLambda ,\mathcal {I}}(\lambda ^{k}-\rho r(\lambda ^{k}))-\lambda _\mathcal {I}^k))\\&= \lambda ^{k}_\mathcal {A}-\alpha _{ cg} r_\mathcal {A}(\lambda ^{k})+\alpha _{ cg}\rho A_{\mathcal {A}\mathcal {I}}\widetilde{r}_{\rho ,\mathcal {I}}(\lambda ^{k})\\&= \lambda ^{k}_\mathcal {A}-\rho r_\mathcal {A}(\lambda ^{k}) - (\alpha _{ cg}-\rho ) r_\mathcal {A}(\lambda ^{k}) + \alpha _{ cg} \rho A_{\mathcal {A}\mathcal {I}} \widetilde{r}_{\rho ,\mathcal {I}}(\lambda ^{k})\!, \end{aligned}$$

where \(\widetilde{r}_\rho ,\) denotes the reduced gradient (2.14) with \(\alpha =\rho \). Due to the definition of the active/inactive sets (3.8)-(3.12), we have \(P_{\varLambda ,\mathcal {A}} \left( \lambda ^{k} -\rho r\left( \lambda ^{k}\right) \right) = \lambda ^{k}_\mathcal {A}-\rho r_\mathcal {A}\left( \lambda ^{k}\right) \) so that

$$\begin{aligned} \lambda ^{k+1,1}= P_{\varLambda } (\lambda ^{k}-\rho r ( \lambda ^{k} )) - s(\lambda ^{k}) \end{aligned}$$
(7.3)

with \(s_\mathcal {I}(\lambda ^{k})=0\) and \(s_\mathcal {A}(\lambda ^{k})=(\alpha _{ cg}-\rho ) r_\mathcal {A}\left( \lambda ^{k}\right) - \alpha _{ cg} \rho A_{\mathcal {A}\mathcal {I}} \widetilde{r}_{\rho ,\mathcal {I}}\left( \lambda ^{k}\right) \). The following inequalities follows from the CGM:

$$\begin{aligned} q(\lambda ^k) \ge q(\lambda ^{k+1,0}) \ge q(\lambda ^{k+1,1}). \end{aligned}$$

Under assumptions that \(\rho \le \alpha _{ cg}\) and \(\widetilde{r}_{\rho ,\mathcal {I}}\left( \lambda ^{k}\right) \) is sufficiently small, one can prove:

$$\begin{aligned} q(\lambda ^{k+1,0}) \ge q ( P_{\varLambda } ( \lambda ^{k}-\rho r ( \lambda ^{k} ))) \ge q(\lambda ^{k+1,1}). \end{aligned}$$
(7.4)

The following interpretation yields from (7.3) and (7.4): if the initial CGM iteration is given by (7.2), the full projection \(P_{\varLambda } \left( \lambda ^{k}-\rho r \left( \lambda ^{k} \right) \right) \) is inherently included in the SSNM after the first CGM iteration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kučera, R., Motyčková, K. & Markopoulos, A. The R-linear convergence rate of an algorithm arising from the semi-smooth Newton method applied to 2D contact problems with friction. Comput Optim Appl 61, 437–461 (2015). https://doi.org/10.1007/s10589-014-9716-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9716-2

Keywords

Mathematics Subject Classification

Navigation