Abstract
The paper proposes a primal-dual algorithm for solving an equality constrained minimization problem. The algorithm is a Newton-like method applied to a sequence of perturbed optimality systems that follow naturally from the quadratic penalty approach. This work is first motivated by the fact that a primal-dual formulation of the quadratic penalty provides a better framework than the standard primal form. This is highlighted by strong convergence properties proved under standard assumptions. In particular, it is shown that the usual requirement of solving the penalty problem with a precision of the same size as the perturbation parameter, can be replaced by a much less stringent criterion, while guaranteeing the superlinear convergence property. A second motivation is that the method provides an appropriate regularization for degenerate problems with a rank deficient Jacobian of constraints. The numerical experiments clearly bear this out. Another important feature of our algorithm is that the penalty parameter is allowed to vary during the inner iterations, while it is usually kept constant. This alleviates the numerical problem due to ill-conditioning of the quadratic penalty, leading to an improvement of the numerical performances.





References
Armand, P.: A quasi-Newton penalty barrier method for convex minimization problems. Comput. Optim. Appl. 26(1), 5–34 (2003)
Armand, P., Benoist, J., Orban, D.: Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming. Comput. Optim. Appl. 41(1), 1–25 (2008)
Armand, P., Benoist, J., Orban, D.: From global to local convergence of interior methods for nonlinear optimization. Optim. Methods Softw. 28(5), 1051–1080 (2013)
Benchakroun, A., Dussault, J.P., Mansouri, A.: A two parameter mixed interior-exterior penalty algorithm. ZOR—Math. Methods Oper. Res. 41(1), 25–55 (1995)
Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts. Comput. Optim. Appl. 40(2), 143–189 (2008)
Benson, H.Y., Vanderbei, R.J., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: filter methods and merit functions. Comput. Optim. Appl. 23(2), 257–272 (2002)
Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Computer Science and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1982)
Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes, MOS-SIAM Series on Optimization, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2010)
Bousquet, E.: Optimisation non linéaire et application au réglage d’un réseau de télescopes. Ph.D. thesis, Université de Limoges, École Doctorale S2i (2009)
Broyden, C.G., Attia, N.F.: A smooth sequential penalty function method for solving nonlinear programming problems. In: System Modelling and Optimization (Copenhagen, 1983). Lecture Notes in Control and Information Sciences, vol. 59, pp. 237–245. Springer, Berlin (1984)
Broyden, C.G., Attia, N.F.: Penalty functions, Newton’s method and quadratic programming. J. Optim. Theory Appl. 58(3), 377–385 (1988)
Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1, Ser. A), 149–185 (2000)
Byrd, R.H., Marazzi, M., Nocedal, J.: On the convergence of Newton iterations to non-stationary points. Math. Program. 99(1, Ser. A), 127–148 (2004)
Byrd, R.H., Nocedal, J., Waltz, R.A.: Feasible interior methods using slacks for nonlinear optimization. Comput. Optim. Appl. 26(1), 35–61 (2003)
Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: An integrated package for nonlinear optimization. In: Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications, vol. 83, pp. 35–59. Springer, New York (2006)
Chen, L., Goldfarb, D.: Interior-point \(l_2\)-penalty methods for nonlinear programming with strong global convergence properties. Math. Program. 108(1, Ser. A), 1–36 (2006)
Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)
Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49, 1–23 (1943)
Curtis, F.E., Nocedal, J., Wächter, A.: A matrix-free algorithm for equality constrained optimization problems with rank-deficient Jacobians. SIAM J. Optim. 20(3), 1224–1249 (2009)
Debreu, G.: Definite and semidefinite quadratic forms. Econometrica 20, 295–300 (1952)
Dennis Jr, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall Series in Computational Mathematics. Prentice Hall Inc., Englewood Cliffs (1983)
Dolan, E., Moré, J., Munson, T.: Benchmarking optimization software with COPS 3.0. Tech. rep., Argonne National Laboratory (2004)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2, Ser. A), 201–213 (2002)
Duff, I.S.: Ma57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30, 118–144 (2004)
Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York (1968)
Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)
Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim. 8(4), 1132–1152 (1998)
Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)
Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Brooks/Cole (2002)
Gertz, E.M., Gill, P.E.: A primal-dual trust region algorithm for nonlinear optimization. Math. Program. 100(1, Ser. B), 49–94 (2004)
Gill, P.E., Robinson, D.P.: A primal-dual augmented Lagrangian. Comput. Optim. Appl. 51(1), 1–25 (2012)
Goldfarb, D., Polyak, R., Scheinberg, K., Yuzefovich, I.: A modified barrier-augmented Lagrangian method for constrained minimization. Comput. Optim. Appl. 14(1), 55–74 (1999)
Gould, N., Orban, D., Toint, P.: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)
Gould, N., Orban, D., Toint, P.: An interior-point \(\ell _1\)-penalty method for nonlinear optimization. Tech. Rep. RAL-TR-2003-022, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England (2003)
Gould, N., Orban, D., Toint, P.: Numerical methods for large-scale nonlinear optimization. Acta Numer. 14, 299–361 (2005)
Gould, N.I.M.: On the accurate determination of search directions for simple differentiable penalty functions. IMA J. Numer. Anal. 6(3), 357–372 (1986)
Gould, N.I.M.: On the convergence of a sequential penalty function method for constrained minimization. SIAM J. Numer. Anal. 26(1), 107–128 (1989)
Griva, I., Shanno, D.F., Vanderbei, R.J., Benson, H.Y.: Global convergence of a primal-dual interior-point method for nonlinear programming. Algorithmic Oper. Res. 3(1), 12–29 (2008)
Murray, W.: Analytical expressions for the eigenvalues and eigenvectors of the Hessian matrices of barrier and penalty functions. J. Optim. Theory Appl. 7, 189–196 (1971)
Nemirovski, A.S., Todd, M.J.: Interior-point methods for optimization. Acta Numer. 17, 191–234 (2008)
Nocedal, J., Wright, S.J.: Numerical optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)
Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods. Math. Program. 87(2, Ser. B), 303–316 (2000). Studies in algorithmic optimization
Tits, A.L., Wächter, A., Bakhtiari, S., Urban, T.J., Lawrence, C.T.: A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM J. Optim. 14(1), 173–199 (2003)
Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13(1–3), 231–252 (1999). Computational optimization–a tribute to Olvi Mangasarian, Part II
Wächter, A., Biegler, L.T.: Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Program. 88(3, Ser. A), 565–574 (2000)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 16(1), 32–48 (2005)
Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1, Ser. A), 25–57 (2006)
Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107(3, Ser. A), 391–408 (2006)
Wright, M.H.: The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull. Am. Math. Soc. (N.S.) 42(1), 39–56 (2005)
Yamashita, H., Yabe, H.: An interior point method with a primal-dual quadratic barrier penalty function for nonlinear optimization. SIAM J. Optim. 14(2), 479–499 (2003)
Acknowledgments
We would like to thank Elsa Bousquet [9] for discussions on a primitive version of the algorithm and Michel Bouard for his serious efforts to implement the optimization software SPDOPT. We also thanks the referees for their valuable efforts in reading the paper and their helpful critical comments.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Armand, P., Benoist, J., Omheni, R. et al. Study of a primal-dual algorithm for equality constrained minimization. Comput Optim Appl 59, 405–433 (2014). https://doi.org/10.1007/s10589-014-9679-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-014-9679-3
Keywords
- Nonlinear programming
- Constrained optimization
- Equality constraints
- Primal-dual method
- Quadratic penalty method