Global error bounds for the extended vertical LCP | Computational Optimization and Applications Skip to main content
Log in

Global error bounds for the extended vertical LCP

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A new necessary and sufficient condition for the row \(\mathcal{W}\) -property is given. By using this new condition and a special row rearrangement, we provide two global error bounds for the extended vertical linear complementarity problem under the row \(\mathcal{W}\) -property, which extend the error bounds given in Chen and Xiang (Math. Program. 106:513–525, 2006) and Mathias and Pang (Linear Algebra Appl. 132:123–136, 1990) for the P-matrix linear complementarity problem, respectively. We show that one of the new error bounds is sharper than the other, and it can be computed easily for some special class of the row \(\mathcal{W}\) -property block matrix. Numerical examples are given to illustrate the error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  2. Chen, X., Xiang, S.H.: Computation of error bounds for P-matrix linear complementarity problems. Math. Program. 106, 513–525 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Comb. Theory 8, 79–90 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, New York (1992)

    MATH  Google Scholar 

  5. Fujisawa, T., Kuh, E.S.: Piecewise-linear theory of nonlinear networks. SIAM J. Appl. Math. 22, 307–328 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gabriel, S.A., Moré, J.J.: Smoothing of mixed complementarity problem. In: Ferris, M.C., Pang, J.-S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 105–116. SIAM, Philadelphia (1997)

    Google Scholar 

  7. Gowda, M.S., Sznajder, R.: The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl. 15, 779–795 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gowda, M.S., Sznajder, R.: A generalization of the Nash equilibrium theorem on bimatrix games. Int. J. Game Theory 25, 1–12 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mangasarian, O.L., Ren, J.: New improved error bounds for the linear complementarity problem. Math. Program. 66, 241–257 (1994)

    Article  MathSciNet  Google Scholar 

  10. Mathias, R., Pang, J.-S.: Error bounds for the linear complementarity problem with a \(\bf{P}\) -Matrix. Linear Algebra Appl. 132, 123–136 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Peng, J.M., Lin, Z.H.: A non-interior continuation method for generalized complementarity problems. Math. Program. 86, 533–563 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Qi, H.D., Liao, L.Z.: A smoothing Newton method for extended vertical linear complementarity problems. SIAM J. Matrix Anal. Appl. 21, 45–66 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sun, M.: Singular control problems in bounded intervals. Stochastics 21, 303–344 (1987)

    MATH  MathSciNet  Google Scholar 

  15. Sznajder, R., Gowda, M.S.: Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223/224, 695–715 (1995)

    Article  MathSciNet  Google Scholar 

  16. Xiu, N., Zhang, J.: A characteristic quantity of \(\bf{P}\) -matrices. Appl. Math. Lett. 15, 41–46 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chen.

Additional information

The work was in part supported by a Grant-in-Aid from Japan Society for the Promotion of Science, and the National Natural Science Foundation of China (10671010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Chen, X. & Xiu, N. Global error bounds for the extended vertical LCP. Comput Optim Appl 42, 335–352 (2009). https://doi.org/10.1007/s10589-007-9134-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9134-9

Keywords

Navigation