Security in IoT-enabled smart agriculture: architecture, security solutions and challenges | Cluster Computing Skip to main content
Log in

Security in IoT-enabled smart agriculture: architecture, security solutions and challenges

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Agricultural industry is one of the most vital industries that has a major contribution to the economy due to its share in the Gross Domestic Product (GDP) and as a source of employment. The past few decades have seen immense change in the operation of agricultural sector with the introduction of precision farming in conjunction with Internet of Things (IoT). The application of such advancements is highly based on exchange of messages between various devices in the farming. This paper aims to study the security scenarios applicable in husbandry through the analysis of possible attacks and threats. The testbeds available for agriculture based on IoT have been studied. An architecture for smart farming is proposed which is independent of the underlying technologies that may be used and the requirements of security have been laid out based on the proposed architecture. A literature survey of security protocols for various subsectors of security in smart agriculture along with authentication protocols in smart applications provides a detailed direction of the progress in each of farming security sub-areas and identifies the dearth of existing protocols. The current progress in development of IoT-based tools and systems from industry has also been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

“Data sharing not applicable to this article as no datasets were generated or analysed during the current study.”

References

  1. Indian Agriculture and Allied Indutries Report, https://www.ibef.org/industry/agriculture-india.aspx (June 2021)

  2. Liu, Y., Ma, X., Shu, L., Hancke, G.. P., Abu-Mahfouz, A.. M.: From industry 4.0 to agriculture 4.0: current status, enabling technologies, and research challenges. IEEE Transact. Indus. Informat. 17(6), 4322–4334 (2021)

    Article  Google Scholar 

  3. Cox, S.: Information technology: the global key to precision agriculture and sustainability. Comput. Electron. Agricult. 36(2), 93–111 (2002)

    Article  Google Scholar 

  4. Pierce, F. J., Nowak, P.: Aspects of Precision Agriculture, Vol. 67 of Advances in Agronomy, Academic Press (1999) pp. 1–85

  5. Zhang, N., Wang, M., Wang, N.: Precision agriculture-a worldwide overview. Comput. Electron. Agricult. 36(2), 113–132 (2002)

    Article  Google Scholar 

  6. Srinivasan, A.: Handbook of Precision Agriculture: Principles and Applications. CRC press, Florida (2006)

    Book  Google Scholar 

  7. Stafford, J.V.: Implementing Precision Agriculture in the 21st Century. J. Agricult. Engin. Res. 76(3), 267–275 (2000)

    Article  Google Scholar 

  8. Mulla, D.J.: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Engin. 114(4), 358–371 (2013)

    Article  Google Scholar 

  9. Klerkx, L., Jakku, E., Labarthe, P.: A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen J Life Sci 90,(2019)

  10. Bacco, M., Barsocchi, P., Ferro, E., Gotta, A., Ruggeri, M.: The Digitisation of Agriculture: a Survey of Research Activities on Smart Farming. Array 3–4, 100009 (2019)

    Article  Google Scholar 

  11. Raj, M., Gupta, S., Chamola, V., Elhence, A., Garg, T., Atiquzzaman, M., Niyato, D.: A survey on the role of Internet of Things for adopting and promoting Agriculture 40. J. Net. Comput. Appl. (2021). https://doi.org/10.1016/j.jnca.2021.103107

  12. Ahmed, N., De, D., Hussain, I.: Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Inter. Things J 5(6), 4890–4899 (2018)

  13. Lin, N., Wang, X., Zhang, Y., Hu, X., Ruan, J.: Fertigation management for sustainable precision agriculture based on Internet of Things. Journal of Cleaner Production 277, 124119 (2020)

    Article  Google Scholar 

  14. Pachayappan, M., Ganeshkumar, C., Sugundan, N.: Technological implication and its impact in agricultural sector: An IoT Based Collaboration framework. Procedia Computer Science 171, 1166–1173 (2020)

    Article  Google Scholar 

  15. Kour, V.P., Arora, S.: Recent Developments of the Internet of Things in Agriculture: A Survey. IEEE Access 8, 129924–129957 (2020)

    Article  Google Scholar 

  16. Torky, M., Hassanein, A.E.: Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Computers and Electronics in Agriculture 178, 105476 (2020)

    Article  Google Scholar 

  17. Shankarnarayan, V. Kellengere., Ramakrishna, H.: Paradigm change in Indian agricultural practices using Big Data: Challenges and opportunities from field to plate, Information Processing in Agriculture 7 (3) (2020) 355–368

  18. Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., Martynenko, A.: IoT, big data and artificial intelligence in agriculture and food industry, IEEE Internet of Things Journal https://doi.org/10.1109/JIOT.2020.2998584

  19. Mogili, U.R., Deepak, B.B.V.L.: Review on Application of Drone Systems in Precision Agriculture. Procedia Computer Science 133, 502–509 (2018)

    Article  Google Scholar 

  20. Maes, W.H., Steppe, K.: Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends in Plant Science 24(2), 152–164 (2019)

    Article  Google Scholar 

  21. Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., Goudos, S. K.: Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review, Internet of Things (2020) 100187

  22. Gonzalez-De-Santos, P., Fernández, R., Sepúlveda, D., Navas, E., Armada, M.: Unmanned ground vehicles for smart farms, Agronomy-Climate Change & Food Security (2020) 73

  23. Modelling, Control and Simulation of an Unmanned Ground Vehicle for Agriculture 4.0, Ph.D. thesis, Politecnico di Torino (2020)

  24. Vasudevan, A., Kumar, D. A., Bhuvaneswari, N. S.: Precision farming using unmanned aerial and ground vehicles, in: IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), (2016), pp. 146–150

  25. Vu, Q., Raković, M., Delic, V., Ronzhin, A.: Trends in Development of UAV-UGV Cooperation Approaches in Precision Agriculture, in: Interactive Collaborative Robotics, Springer International Publishing, Cham, (2018), pp. 213–221

  26. Mammarella, M., Comba, L., Biglia, A., Dabbene, F., Gay, P.: Cooperative Agricultural Operations of Aerial and Ground Unmanned Vehicles, in: IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), (2020), pp. 224–229

  27. Dumanski, J., Peiretti, R., Benites, J., McGarry, D., Pieri, C.: The paradigm of conservation agriculture. Proceedings of world association of soil and water conservation 1(2006), 58–64 (2006)

    Google Scholar 

  28. Shrestha, J., Subedi, S., Timsina, K.P., Chaudhary, A., Kandel, M., Tripathi, S.: Conservation agriculture as an approach towards sustainable crop production: A review. Farming and Management 5(1), 7–15 (2020)

    Google Scholar 

  29. Tock, J.Y., Lai, C.L., Lee, K.T., Tan, K.T., Bhatia, S.: Banana biomass as potential renewable energy resource: A Malaysian case study. Renewable and Sustainable Energy Reviews 14(2), 798–805 (2010). https://doi.org/10.1016/j.rser.2009.10.010

    Article  Google Scholar 

  30. The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study, Renewable and Sustainable Energy Reviews 19 (2013) 666–677. https://doi.org/10.1016/j.rser.2012.11.060

  31. Avcioǧlu, M.D.A.O., Türker, U.: Assessment of the energy potential of agricultural biomass residues in Turkey. Renewable Energy 138, 610–619 (2019). https://doi.org/10.1016/j.renene.2019.01.053

    Article  Google Scholar 

  32. Jat, H., Jat, R., Nanwal, R., Lohan, S.K., Yadav, A., Poonia, T., Sharma, P., Jat, M.: Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renewable Energy 155, 1372–1382 (2020). https://doi.org/10.1016/j.renene.2020.04.046

    Article  Google Scholar 

  33. Demestichas, K., Peppes, N., Alexakis, T.: Survey on Security Threats in Agricultural IoT and Smart Farming, Sensors 20 (22)

  34. Sontowski, S., Gupta, M., Laya Chukkapalli, S. S., Abdelsalam, M., Mittal, S., Joshi, A., Sandhu, R.: Cyber Attacks on Smart Farming Infrastructure, in: IEEE 6th International Conference on Collaboration and Internet Computing (CIC), (2020), pp. 135–143

  35. Ferrag, M. A., Shu, L., Djallel, H., Choo, K.-K. R.: Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack in Agriculture 4.0, Electronics 10 (11)

  36. West, J.: A prediction model framework for cyber-attacks to precision agriculture technologies. J. Agricult. Food Inform. 19(4), 307–330 (2018)

    Article  Google Scholar 

  37. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and Secure Channels, in: International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’02), Amsterdam, The Netherlands, (2002), pp. 337–351

  39. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under the threat of power analysis attacks. IEEE Transac. Comput. 51(5), 541–552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, X., Shu, L., Chen, J., Ferrag, M.A., Wu, J., Nurellari, E., Huang, K.: A Survey on Smart Agriculture: Development Modes. Technologies, and Security and Privacy Challenges, IEEE/CAA Journal of Automatica Sinica 8(2), 273–302 (2021)

    Article  Google Scholar 

  41. Zanella, A. Rettore de Araujo, da Silva, E., Albini, L. C. Pessoa: Security challenges to smart agriculture: Current state, key issues, and future directions, Array 8 (2020) 100048

  42. Ferrag, M.A., Shu, L., Yang, X., Derhab, A., Maglaras, L.: Security and privacy for green IoT-based agriculture: review, blockchain solutions, and challenges, IEE. Access 8, 32031–32053 (2020)

    Article  Google Scholar 

  43. Gupta, M., Abdelsalam, M., Khorsandroo, S., Mittal, S.: Security and privacy in smart farming: challenges and opportunities. IEEE Access 8, 34564–34584 (2020)

    Article  Google Scholar 

  44. Farooq, M.S., Riaz, S., Abid, A., Abid, K., Naeem, M.A.: A survey on the role of IoT in agriculture for the implementation of smart farming. IEEE Access 7, 156237–156271 (2019)

    Article  Google Scholar 

  45. Khanna, A., Kaur, S.: Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Comput. Electron. Agricult. 157, 218–231 (2019)

    Article  Google Scholar 

  46. Ruan, J., Wang, Y., Chan, F.T.S., Hu, X., Zhao, M., Zhu, F., Shi, B., Shi, Y., Lin, F.: A life cycle framework of green IoT-based agriculture and its finance, IEEE Communications Magazine 57(3), 90–96 (2019)

    Article  Google Scholar 

  47. Elijah, O., Rahman, T.A., Orikumhi, I., Leow, C.Y., Hindia, M.N.: An overview of internet of things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet of Things J. 5(5), 3758–3773 (2018)

    Article  Google Scholar 

  48. Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., Ellis, K.: IoT in agriculture: Designing a Europe-wide large-scale pilot. IEEE Communications Magazine 55(9), 26–33 (2017)

    Article  Google Scholar 

  49. Ray, P.P.: Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments 9(4), 395–420 (2017)

    Article  Google Scholar 

  50. Barreto, L., Amaral, A.: Smart Farming: Cyber Security Challenges, in. International Conference on Intelligent Systems (IS) 2018, 870–876 (2018). https://doi.org/10.1109/IS.2018.8710531

    Article  Google Scholar 

  51. Boghossian, A., Linsky, S., Brown, A., Mutschler, P., Ulicny, B., Barrett, L.: et al., Threats to precision agriculture, US Department of Homeland Security, Washington, DC, USA, Tech. Rep. 20181003a

  52. Jahn, M. M., Oemichen, W. L., Treverton, G. F., David, S. L., Rose, M. A., Brosig, M. A., Jayamah, B. J., Hutchison, W. K., Rimestad, B. B.: Cyber Risk and Security Implications in Smart Agriculture and Food Systems, https://jahnresearchgroup.webhosting.cals.wisc.edu/wp-content/uploads/sites/223/2019/01/Agricultural-Cyber-Risk-and-Security.pdf. Accessed on September 2021 (2019)

  53. Glaroudis, D., Iossifides, A., Chatzimisios, P.: Survey, comparison and research challenges of IoT application protocols for smart farming. Computer Networks 168, 107037 (2020)

    Article  Google Scholar 

  54. Window, M.: Security in precision agriculture: Vulnerabilities and risks of agricultural systems (2019)

  55. Kulau, U., Schildt, S., Rottmann, S., Gernert, B., Wolf, L.: Demo: PotatoNet - Robust Outdoor Testbed for WSNs: Experiment like on Your Desk, pp. 59–60. Paris, France, Outside. (2015)

  56. Gernert, B., Rottmann, S., Wolf, L. C.: PotatoMesh: A Solar Powered WSN Testbed: Poster, in: 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’16, Paderborn, Germany, (2016), pp. 391–392

  57. Hartung, R., Kulau, U., Gernert, B., Rottmann, S., Wolf, L.: On the Experiences with Testbeds and Applications in Precision Farming, in: First ACM International Workshop on the Engineering of Reliable, Robust, and Secure Embedded Wireless Sensing Systems, Delft, Netherlands, (2017), pp. 54–61

  58. Chowdhury, M. E. H., Khandakar, A., Ahmed, S., Al-Khuzaei, F., Hamdalla, J., Haque, F., Reaz, M. B. I., Al Shafei, A., Al-Emadi, N.: Design, Construction and Testing of IoT Based Automated Indoor Vertical Hydroponics Farming Test-Bed in Qatar, Sensors 20 (19)

  59. ThingSpeak for Smart Farming, https://thingspeak.com/pages/smart_farming (2021)

  60. Swain, M., Zimon, D., Singh, R., Hashmi, M. F., Rashid, M., Hakak, S.: LoRa-LBO: An Experimental Analysis of LoRa Link Budget Optimization in Custom Build IoT Test Bed for Agriculture 4.0, Agronomy 11 (5)

  61. Bor, M., Vidler, J. E., Roedig, U.: LoRa for the Internet of Things (2016)

  62. Sinha, R.S., Wei, Y., Hwang, S.-H.: A survey on LPWA technology: LoRa and NB-IoT. ICT Express 3(1), 14–21 (2017)

    Article  Google Scholar 

  63. LoRa Alliance, https://lora-alliance.org/ (2021)

  64. Blynk Unified Platform, https://blynk.io/ (2021)

  65. Matlab, https://www.mathworks.com/products/matlab.html (2021)

  66. Pujara, D., Kukreja, P., Gajjar, S.: Design and Development of E-Sense: IoT based Environment Monitoring System, in: IEEE Students Conference on Engineering Systems (SCES), (2020), pp. 1–5

  67. Jiang, J., Moallem, M.: Development of an Intelligent LED Lighting Control Testbed for IoT-based Smart Greenhouses, in: IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, (2020), pp. 5226–5231

  68. Martínez, R., Pastor, J. A., Álvarez, B., Iborra, A.: A Testbed to Evaluate the FIWARE-Based IoT Platform in the Domain of Precision Agriculture, Sensors 16 (11)

  69. FIWARE: The Open Source Platform for Our Smart Digital Future, https://www.fiware.org/ (2021)

  70. FIWARE Cygnus - Tuning Tips for Increasing the Performance, https://fiware-orion.readthedocs.io/en/master/ (2021)

  71. MongoDB, https://www.mongodb.com/ (2021)

  72. FIWARE Cygnus - Tuning Tips for Increasing the Performance, https://fiware-cygnus.readthedocs.io/en/latest/ (2021)

  73. Sadowski, S., Spachos, P.: Solar-Powered Smart Agricultural Monitoring System Using Internet of Things Devices, in: IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), (2018), pp. 18–23

  74. Escolar, S., Rincón, F., del Toro, X., Barba, J., Villanueva, F. J., Santofimia, M. J., Villa, D., López, J. C.: The PLATINO Experience: A LoRa-based Network of Energy-Harvesting Devices for Smart Farming, in: XXXIV Conference on Design of Circuits and Integrated Systems (DCIS), (2019), pp. 1–6

  75. Marcu, I., Voicu, C., Drăgulinescu, A. M. C., Fratu, O., Suciu, G., Balaceanu, C., Andronache, M. M.: Overview of IoT Basic Platforms for Precision Agriculture, in: Future Access Enablers for Ubiquitous and Intelligent Infrastructures, Springer International Publishing, (2019), pp. 124–137

  76. Das, A.K., Zeadally, S., He, D.: Taxonomy and analysis of security protocols for Internet of Things. Future Generation Computer Systems 89, 110–125 (2018)

    Article  Google Scholar 

  77. Wazid, M., Das, A. K., Bhat K, V., Vasilakos, A. V.: LAM-CIoT: Lightweight authentication mechanism in cloud-based IoT environment, Journal of Network and Computer Applications 150 (2020) 102496

  78. Wazid, M., Das, A.K., Kumar, N., Vasilakos, A.V., Rodrigues, J.J.P.C.: Design and analysis of aecure lightweight remote user authentication and key agreement scheme in internet of drones deployment. IEEE Internet of Things J. 6(2), 3572–3584 (2019)

    Article  Google Scholar 

  79. Jiang, Q., Zeadally, S., Ma, J., He, D.: Lightweight three-factor authentication and key agreement protocol for internet-integrated wireless sensor networks. IEEE Access 5, 3376–3392 (2017)

    Article  Google Scholar 

  80. Odelu, V., Das, A.K., Goswami, A.: SEAP: Secure and efficient authentication protocol for NFC applications using pseudonyms. IEEE Transactions on Consumer Electronics 62(1), 30–38 (2016)

    Article  Google Scholar 

  81. Chatterjee, S., Das, A., Sing, J.: An Enhanced Access Control Scheme in Wireless Sensor Networks, Ad-Hoc and Sensor. Wireless Networks 21, 121–149 (2014)

    Google Scholar 

  82. Mishra, D., Das, A.K., Mukhopadhyay, S.: A secure and efficient ECC-based user anonymity-preserving session initiation authentication protocol using smart card. Peer-to-Peer Networking and Applications 9(1), 171–192 (2016)

    Article  Google Scholar 

  83. Challa, S., Das, A.K., Gope, P., Kumar, N., Wu, F., Vasilakos, A.V.: Design and analysis of authenticated key agreement scheme in cloud-assisted cyber-physical systems. Future Generation Computer Systems 108, 1267–1286 (2020)

    Article  Google Scholar 

  84. Das, A.K., Sutrala, A.K., Kumari, S., Odelu, V., Wazid, M., Li, X.: An efficient multi-gateway-based three-factor user authentication and key agreement scheme in hierarchical wireless sensor networks. Security and Communication Networks 9(13), 2070–2092 (2016)

    Article  Google Scholar 

  85. Lin, C., He, D., Kumar, N., Choo, K.R., Vinel, A., Huang, X.: Security and Privacy for the Internet of Drones: Challenges and Solutions. IEEE Communications Magazine 56(1), 64–69 (2018)

    Article  Google Scholar 

  86. Wazid, M., Das, A.K., Khan, M.K., Al-Ghaiheb, A.A., Kumar, N., Vasilakos, A.V.: Secure Authentication Scheme for Medicine Anti-Counterfeiting System in IoT Environment. IEEE Internet of Things Journal 4(5), 1634–1646 (2017)

    Article  Google Scholar 

  87. Wazid, M., Bagga, P., Das, A.K., Shetty, S., Rodrigues, J.J.P.C., Park, Y.: AKM-IoV: Authenticated Key Management Protocol in Fog Computing-Based Internet of Vehicles Deployment. IEEE Internet of Things Journal 6(5), 8804–8817 (2019)

    Article  Google Scholar 

  88. Li, C., Lee, C., Weng, C.: Security and Efficiency Enhancement of Robust ID Based Mutual Authentication and Key Agreement Scheme Preserving User Anonymity in Mobile Networks. J. Inf. Sci. Eng. 34(1), 155–170 (2018)

    Google Scholar 

  89. Srinivas, J., Das, A.K., Kumar, N., Rodrigues, J.J.P.C.: TCALAS: Temporal Credential-Based Anonymous Lightweight Authentication Scheme for Internet of Drones Environment. IEEE Transactions on Vehicular Technology 68(7), 6903–6916 (2019)

    Article  Google Scholar 

  90. Jiang, Q., Zhang, N., Ni, J., Ma, J., Ma, X., Choo, K.K.R.: Unified Biometric Privacy Preserving Three-Factor Authentication and Key Agreement for Cloud-Assisted Autonomous Vehicles. IEEE Transactions on Vehicular Technology 69(9), 9390–9401 (2020)

    Article  Google Scholar 

  91. Wazid, M., Das, A. K., Lee, J.-H.: Authentication protocols for the internet of drones: taxonomy, analysis and future directions, Journal of Ambient Intelligence and Humanized Computinghttps://doi.org/10.1007/s12652-018-1006-x

  92. Li, C.-T., Chen, C.-L., Lee, C.-C., Weng, C.-Y., Chen, C.-M.: A novel three-party password-based authenticated key exchange protocol with user anonymity based on chaotic maps. Soft Computing 22(8), 2495–2506 (2018)

    Article  MATH  Google Scholar 

  93. Wazid, M., Bera, M., Mitra, A., Das, A. K., Ali, R.: Private Blockchain-Envisioned Security Framework for AI-Enabled IoT-Based Drone-Aided Healthcare Services, in: 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond (DroneCom’20), (2020), pp. 37–42

  94. Bera, B., Das, A. K., Garg, S., Piran, M. J., Hossain, M. S.: Access Control Protocol for Battlefield Surveillance in Drone-Assisted IoT Environment, IEEE Internet of Things Journal https://doi.org/10.1109/JIOT.2020.3049003

  95. Roy, S., Das, A.K., Chatterjee, S., Kumar, N., Chattopadhyay, S., Rodrigues, J.J.P.C.: Provably Secure Fine-Grained Data Access Control Over Multiple Cloud Servers in Mobile Cloud Computing Based Healthcare Applications. IEEE Transactions on Industrial Informatics 15(1), 457–468 (2019)

    Article  Google Scholar 

  96. Jangirala, S., Das, A.K., Vasilakos, A.V.: Designing Secure Lightweight Blockchain-Enabled RFID-Based Authentication Protocol for Supply Chains in 5G Mobile Edge Computing Environment. IEEE Transactions on Industrial Informatics 16(11), 7081–7093 (2020)

    Article  Google Scholar 

  97. Zhang, Y., He, D., Li, L., Chen, B.: A lightweight authentication and key agreement scheme for Internet of Drones. Computer Communications 154, 455–464 (2020)

    Article  Google Scholar 

  98. Masud, M., Gaba, G. S., Choudhary, K., Hossain, M. S., Alhamid, M. F., Muhammad, G.: Lightweight and Anonymity-Preserving User Authentication Scheme for IoT-based Healthcare, IEEE Internet of Things Journal https://doi.org/10.1109/JIOT.2021.3080461

  99. Kumar, P., Chouhan, L.: A secure authentication scheme for IoT application in smart home. Peer-To-Peer Networking And Applications 14(1), 420–438 (2021)

    Article  Google Scholar 

  100. Stojkoska, B. L Risteska., Trivodaliev, K.. V.: A review of Internet of Things for smart home: Challenges and solutions. Journal of Cleaner Production 140, 1454–1464 (2017)

    Article  Google Scholar 

  101. Wilson, C., Hargreaves, T., Hauxwell-Baldwin, R.: Benefits and risks of smart home technologies. Energy Policy 103, 72–83 (2017)

    Article  Google Scholar 

  102. Alaa, M., Zaidan, A., Zaidan, B., Talal, M., Kiah, M.: A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications 97, 48–65 (2017)

    Article  Google Scholar 

  103. Davis, B.D., Mason, J.C., Anwar, M.: Vulnerability Studies and Security Postures of IoT Devices: A Smart Home Case Study. IEEE Internet of Things Journal 7(10), 10102–10110 (2020)

    Article  Google Scholar 

  104. Wazid, M., Das, A.K., Odelu, V., Kumar, N., Susilo, W.: Secure Remote User Authenticated Key Establishment Protocol for Smart Home Environment. IEEE Transactions on Dependable and Secure Computing 17(2), 391–406 (2017)

    Article  Google Scholar 

  105. Shuai, M., Yu, N., Wang, H., Xiong, L.: Anonymous authentication scheme for smart home environment with provable security. Computers & Security 86, 132–146 (2019)

    Article  Google Scholar 

  106. Dhillon, P.K., Kalra, S.: Secure multi-factor remote user authentication scheme for Internet of Things environments. International Journal of Communication Systems 30(16), e3323 (2017)

    Article  Google Scholar 

  107. Lee, H., Kang, D., Ryu, J., Won, D., Kim, H., Lee, Y.: A three-factor anonymous user authentication scheme for Internet of Things environments. Journal of Information Security and Applications 52, 102494 (2020)

    Article  Google Scholar 

  108. Li, J., Li, Y., Ren, J., Wu, J.: Hop-by-Hop Message Authenticationand Source Privacy in WirelessSensor Networks. IEEE Transactions on Parallel and Distributed Systems 25(5), 1223–1232 (2014)

    Article  Google Scholar 

  109. Zhang, W., Subramanian, N., Wang, G.: Lightweight and compromise-resilient message authentication in sensor networks, in: IEEE 27th Conference on Computer Communications (INFOCOM’08), (2008), pp. 1418–1426

  110. Wei, J., Phuong, T.V.X., Yang, G.: An Efficient Privacy Preserving Message Authentication Scheme for Internet-of-Things. IEEE Transactions on Industrial Informatics 17(1), 617–626 (2021)

    Article  Google Scholar 

  111. Shafi, U., Mumtaz, R., Garcia-Nieto, J., Hassan, S. A., Zaidi, S. A. R., Iqbal, N.: Precision Agriculture Techniques and Practices: From Considerations to Applications, Sensors 19 (17)

  112. Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M., Ismail, M.: Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review, Sensors 17 (8)

  113. Salin, V.: Information technology in agri-food supply chains. The International Food and Agribusiness Management Review 1(3), 329–334 (1998)

    Article  Google Scholar 

  114. Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research 196(1), 1–20 (2009)

    Article  MATH  Google Scholar 

  115. Lezoche, M., Hernandez, J. E., Díaz, M. del Mar Eva Alemany, Panetto, H., Kacprzyk, J.: Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture, Computers in Industry 117 (2020) 103187

  116. Bosona, T., Gebresenbet, G.: Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control 33(1), 32–48 (2013)

    Article  Google Scholar 

  117. Hassija, V., Chamola, V., Gupta, V., Jain, S., Guizani, N.: A Survey on Supply Chain Security: Application Areas. Security Threats, and Solution Architectures, IEEE Internet of Things Journal 8(8), 6222–6246 (2021). https://doi.org/10.1109/JIOT.2020.3025775

    Article  Google Scholar 

  118. Ruiz-Garcia, L., Lunadei, L.: The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture 79(1), 42–50 (2011)

    Article  Google Scholar 

  119. Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarriá, D., Menesatti, P.: A review on agri-food supply chain traceability by means of RFID technology. Food and bioprocess technology 6(2), 353–366 (2013)

    Article  Google Scholar 

  120. Gandino, F., Montrucchio, B., Rebaudengo, M., Sanchez, E.R.: On Improving Automation by Integrating RFID in the Traceability Management of the Agri-Food Sector. IEEE Transactions on Industrial Electronics 56(7), 2357–2365 (2009)

    Article  Google Scholar 

  121. Alfian, G., Rhee, J., Ahn, H., Lee, J., Farooq, U., Ijaz, M.F., Syaekhoni, M.A.: Integration of RFID, wireless sensor networks, and data mining in an e-pedigree food traceability system. Journal of Food Engineering 212, 65–75 (2017)

    Article  Google Scholar 

  122. Alfian, G., Syafrudin, M., Farooq, U., Ma’arif, M.R., Syaekhoni, M.A., Fitriyani, N.L., Lee, J., Rhee, J.: Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control 110, 107016 (2020)

    Article  Google Scholar 

  123. Badia-Melis, R., Mishra, P., Ruiz-García, L.: Food traceability: New trends and recent advances. A review, Food Control 57, 393–401 (2015)

    Article  Google Scholar 

  124. Dandage, K., Badia-Melis, R., Ruiz-García, L.: Indian perspective in food traceability: A review. Food Control 71, 217–227 (2017)

    Article  Google Scholar 

  125. Feng, H., Wang, X., Duan, Y., Zhang, J., Zhang, X.: Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. Journal of Cleaner Production 260, 121031 (2020)

    Article  Google Scholar 

  126. Wang, L., Xu, L., Zheng, Z., Liu, S., Li, X., Cao, L., Li, J., Sun, C.: Smart Contract-Based Agricultural Food Supply Chain Traceability. IEEE Access 9, 9296–9307 (2021)

    Article  Google Scholar 

  127. Salah, K., Nizamuddin, N., Jayaraman, R., Omar, M.: Blockchain-Based Soybean Traceability in Agricultural Supply Chain. IEEE Access 7, 73295–73305 (2019)

    Article  Google Scholar 

  128. Dasaklis, T. K., Casino, F., Patsakis, C.: Defining Granularity Levels for Supply Chain Traceability Based on IoT and Blockchain, in: International Conference on Omni-Layer Intelligent Systems, Crete, Greece, (2019), pp. 184–190

  129. Bhutta, M.N.M., Ahmad, M.: Secure identification, traceability and real-time tracking of agricultural food supply during transportation using internet of things. IEEE Access 9, 65660–65675 (2021)

    Article  Google Scholar 

  130. Lin, D.-Y., Juan, C.-J., Chang, C.-C.: Managing Food Safety With Pricing, Contracts and Coordination in Supply Chains, IEEE. Access 7, 150892–150909 (2019)

    Article  Google Scholar 

  131. Zheng, M., Zhang, S., Zhang, Y., Hu, B.: Construct Food Safety Traceability System for People’s Health Under the Internet of Things and Big Data. IEEE Access 9, 70571–70583 (2021)

    Article  Google Scholar 

  132. Ding, L., Wu, J., Zhang, X., Li, J., Ma, J.: Privacy Preserved Cyber-Physical Searching for Information-Centric Intelligent Agriculture. IEEE Open Journal of the Computer Society 2, 106–116 (2021)

    Article  Google Scholar 

  133. Anand, T., Sinha, S., Mandal, M., Chamola, V., Yu, F.R.: Agrisegnet: Deep aerial semantic segmentation framework for iot-assisted precision agriculture. IEEE Sensors Journal 21(16), 17581–17590 (2021). https://doi.org/10.1109/JSEN.2021.3071290

    Article  Google Scholar 

  134. Hassija, V., Batra, S., Chamola, V., Anand, T., Goyal, P., Goyal, N., Guizani, M.: A blockchain and deep neural networks-based secure framework for enhanced crop protection. Ad Hoc Networks 119, 102537 (2021). https://doi.org/10.1016/j.adhoc.2021.102537

    Article  Google Scholar 

  135. Ametepe, A. F.-X., Ahouandjinou, S. A. R. M., Ezin, E. C.: Secure Encryption by Combining Asymmetric and Symmetric Cryptographic Method for Data Collection WSN in smart Agriculture, in: IEEE International Smart Cities Conference (ISC2), (2019), pp. 93–99. https://doi.org/10.1109/ISC246665.2019.9071658

  136. Advanced Encryption Standard, FIPS PUB 197, National Institute of Standards and Technology (NIST), U.S. Department of Commerce, November 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. Accessed on June 2021 (2001)

  137. Vidyashree, L., Suresha, B. M.: Methodology to secure agricultural data in iot, in: Emerging Technologies in Data Mining and Information Security, Springer Singapore, Singapore, (2019), pp. 129–139

  138. May, W. E.: Secure Hash Standard, FIPS PUB 180-1, National Institute of Standards and Technology (NIST), U.S. Department of Commerce, April 1995. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf. Accessed on January 2021 (2015)

  139. Chukkapalli, S. S. L., Piplai, A., Mittal, S., Gupta, M., Joshi, A.: A Smart-Farming Ontology for Attribute Based Access Control, in: IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), (2020), pp. 29–34

  140. Friha, O., Ferrag, M.A., Shu, L., Nafa, M.: A Robust Security Framework based on Blockchain and SDN for Fog Computing enabled Agricultural Internet of Things, in. International Conference on Internet of Things and Intelligent Applications (ITIA) 2020, 1–5 (2020)

    Google Scholar 

  141. Johnson, D., Menezes, A., Vanstone, S.: The Elliptic Curve Digital Signature Algorithm (ECDSA). International Journal of Information Security 1(1), 36–63 (2001)

    Article  Google Scholar 

  142. Song, J., Zhong, Q., Wang, W., Su, C., Tan, Z., Liu, Y.: FPDP:Flexible Privacy-preserving Data Publishing Scheme for Smart Agriculture, IEEE Sensors Journal https://doi.org/10.1109/JSEN.2020.3017695

  143. Yousefi, S., Karimipour, H., Derakhshan, F.: Data Aggregation Mechanisms on the Internet of Things: A Systematic Literature Review. Internet of Things 15, 100427 (2021)

    Article  Google Scholar 

  144. Zhou, M., Zheng, Y., Guan, Y., Peng, L., Lu, R.: Efficient and privacy-preserving range-max query in fog-based agricultural IoT. Peer-to-Peer Networking and Applications 14, 2156–2170 (2021)

    Article  Google Scholar 

  145. Karthickraja, N., Sumathy, V., Jabeer Ahamed, M.: A novel hybrid routing protocol for data aggregation in agricultural applications, in: International Conference on Communication Control and Computing Technologies, (2010), pp. 227–231

  146. Ahmed, R. Z., Biradar, R. C.: Data aggregation for pest identification in coffee plantations using WSN: A hybrid model, in: International Conference on Computing and Network Communications (CoCoNet), (2015), pp. 139–146

  147. Ahmed, R. Z., Biradar, R. C.: Redundancy aware data aggregation for pest control in coffee plantation using wireless sensor networks, in: 2nd International Conference on Signal Processing and Integrated Networks (SPIN), (2015), pp. 984–989

  148. Kim, Y., Bae, P., Han, J., Ko, Y.-B.: Data aggregation in precision agriculture for low-power and lossy networks, in: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), (2015), pp. 438–443

  149. Sankar, S., Srinivasan, P., Luhach, A.K., Somula, R., Chilamkurti, N.: Energy-aware grid-based data aggregation scheme in routing protocol for agricultural internet of things. Sustainable Computing: Informatics and Systems 28, 100422 (2020)

    Google Scholar 

  150. Yuan, J., Liu, W., Wang, J., Shi, J., Miao, L.: An efficient framework for data aggregation in smart agriculture. Concurrency and Computation: Practice and Experience 33(10), e6160 (2021)

    Article  Google Scholar 

  151. Stamatescu, G., Dragana, C., Stamatescu, I., Ichim, L., Popescu, D.: IoT-Enabled Distributed Data Processing for Precision Agriculture, in: 27th Mediterranean Conference on Control and Automation (MED), (2019), pp. 286–291

  152. Ali, R., Pal, A.K., Kumari, S., Karuppiah, M., Conti, M.: A secure user authentication and key-agreement scheme using wireless sensor networks for agriculture monitoring. Future Generation Computer Systems 84, 200–215 (2018)

    Article  Google Scholar 

  153. Chen, M., Lee, T.-F., Pan, J.-I.: An Enhanced Lightweight Dynamic Pseudonym Identity Based Authentication and Key Agreement Scheme Using Wireless Sensor Networks for Agriculture Monitoring, Sensors 19 (5)

  154. Chae, C.-J., Cho, H.-J.: Enhanced secure device authentication algorithm in P2P-based smart farm system. Peer-to-peer networking and applications 11(6), 1230–1239 (2018)

    Article  Google Scholar 

  155. Bothe, A., Bauer, J., Aschenbruck, N.: RFID-assisted Continuous user authentication for IoT-based smart farming, in: IEEE International Conference on RFID Technology and Applications (RFID-TA), (2019), pp. 505–510

  156. Rangwani, D., Sadhukhan, D., Ray, S., Khan, M.K., Dasgupta, M.: An improved privacy preserving remote user authentication scheme for agricultural wireless sensor network. Transactions on Emerging Telecommunications Technologies 32(3), e4218 (2021). https://doi.org/10.1002/ett.4218

    Article  Google Scholar 

  157. Raspberry Pi 3 Model B+, https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/. Accessed on April 2021 (2020)

  158. Bera, B., Vangala, A., Das, A. K., Lorenz, P., Khan, M. Khurram.: Private blockchain-envisioned drones-assisted authentication scheme in IoT-enabled agricultural environment, Computer Standards & Interfaces 80 (2022) 103567

  159. Vangala, A., Bera, B., Saha, S., Das, A. K., Kumar, N., Park, Y.: Blockchain-Enabled Certificate-Based Authentication for Vehicle Accident Detection and Notification in Intelligent Transportation Systems, IEEE Sensors Journal 21 (14)

  160. Vangala, A., Das, A. K., Lee, J. H.: Provably-secure Signature-based Anonymous User Authentication protocol in an IoT-enabled Intelligent Precision Agricultural environment, Concurrency and Computation: Practice and Experience (2021) e6187 https://doi.org/10.1002/cpe.6187

  161. Vangala, A., Sutrala, A.K., Das, A.K., Jo, M.: Smart Contract-Based Blockchain-Envisioned Authentication Scheme for Smart Farming. IEEE Internet of Things Journal 8(13), 10792–10806 (2021)

    Article  Google Scholar 

  162. MIRACL Cryptographic SDK: Multiprecision Integer and Rational Arithmetic Cryptographic Library, https://github.com/miracl/MIRACL. Accessed on June 2021 (2020)

  163. KhethiNext, www.khethinext.com (2019)

  164. The Internet of Things for Precision Agriculture, an NSF Engineering Research Center, https://iot4ag.us/products/ (2021)

  165. Infosys Precision Crop Management Testbed, https://www.infosys.com/industries/agriculture/industry-offerings/precision-farming.html (2021)

  166. Smart Farming with IoT and Cloud in Malaysia, https://techwireasia.com/2021/08/smart-farming-with-iot-and-cloud-in-malaysia/ (2021)

  167. Introducting Zero-G Network - Sigfox, https://www.sigfox.com/sites/default/files/og-guide/Sigfox (March 2020)

  168. Tang, Y., Dananjayan, S., Hou, C., Guo, Q., Luo, S., He, Y.: A survey on the 5g network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture 180, 105895 (2021). https://doi.org/10.1016/j.compag.2020.105895

    Article  Google Scholar 

  169. Meng, H., Cheng, Y.: Research on key technologies of intelligent agriculture under 5g environment. Journal of Physics: Conference Series 1345(4), 042057 (2019). https://doi.org/10.1088/1742-6596/1345/4/042057

    Article  Google Scholar 

  170. Li, T., Li, D.: Prospects for the application of 5g technology in agriculture and rural areas, in: 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 2176–2179. (2020) https://doi.org/10.1109/ICMCCE51767.2020.00472

  171. Vangala, A., Das, A.K., Kumar, N., Alazab, M.: Smart Secure Sensing for IoT-Based Agriculture: Blockchain Perspective. IEEE Sensors Journal 21(16), 17591–17607 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the Project UIDB/50008/2020; and by Brazilian National Council for Scientific and Technological Development - CNPq, via Grant No. 313036/2020-9. The authors would like to thank the anonymous reviewers and the associate editor for their valuable feedback on the paper.

Funding

This work was supported by “FCT/MCTES through national funds and when applicable co-funded EU funds under the Project UIDB/EEA/50008/2020; by the Government of the Russian Federation under Grant 08-08; and by the Brazilian National Council for Research and Development (CNPq) via Grants No. 431726/2018-3 and 313036/2020-9.”

Author information

Authors and Affiliations

Authors

Contributions

“Conceptualization: Anusha Vangala, Ashok Kumar Das; Methodology: Anusha Vangala, Ashok Kumar Das, Vinay Chamola, Valery Korotaev, Joel J. P. C. Rodrigues; Security analysis: Anusha Vangala and Ashok Kumar Das; Investigation: Anusha Vangala, Ashok Kumar Das, Vinay Chamola,Valery Korotaev, Joel J. P. C. Rodrigues; Writing-original draft preparation and writing-review and editing: Anusha Vangala, Ashok Kumar Das, Joel J. P. C. Rodrigues; Supervision: Ashok Kumar Das, Vinay Chamola, Valery Korotaev, Joel J. P. C. Rodrigues; Funding acquisition: Joel J. P. C. Rodrigues.”

Corresponding author

Correspondence to Ashok Kumar Das.

Ethics declarations

Conflict of interest

The authors have “no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vangala, A., Das, A.K., Chamola, V. et al. Security in IoT-enabled smart agriculture: architecture, security solutions and challenges. Cluster Comput 26, 879–902 (2023). https://doi.org/10.1007/s10586-022-03566-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-022-03566-7

Keywords

Navigation