Towards the design of real-time autonomous IoT NIDS | Cluster Computing
Skip to main content

Towards the design of real-time autonomous IoT NIDS

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Classic security methods become less effective against the Internet of Things (IoT) cyber-attacks, such as cryptography. An urgent need for real-time and lightweight detection of cyber-attacks is needed to secure IoT networks. This demand is achieved by a reliable and efficient intrusion detection system (IDS) that can meet IoT environments' high scalability and dynamicity.

Herein, we analyzed the traffic and features of commonly used and recently published datasets for IoT networks. Furthermore, we proposed an ensemble feature selection method. Also, we studied the effects of traffic heterogeneity levels and time-window size on several classification methods to justify the detection model selection. Regarding the BotNet-IoT dataset, we noticed that few features play a critical role in IDS performance, and larger time-windows were slightly better than the shorter time-windows. Furthermore, we found that PCA classifier performance was significantly affected by traffic heterogeneity. On the other hand, the Boosted Tree showed the best and the most stable performance among all the considered classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alfandi, O., Khanji, S., Ahmad, L., Khattak, A.: A survey on boosting IoT security and privacy through blockchain. Clust. Comput. (2020). https://doi.org/10.1007/s10586-020-03137-8

    Article  Google Scholar 

  2. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. ArXiv180209089 Cs, 2018. Available: http://arxiv.org/abs/1802.09089 (accessed 24 Oct 2019)

  3. Li, D., Cai, Z., Deng, L., Yao, X., Wang, H.H.: Information security model of block chain based on intrusion sensing in the IoT environment. Clust. Comput. 22(1), 451–468 (2019). https://doi.org/10.1007/s10586-018-2516-1

    Article  Google Scholar 

  4. Mahdavi Hezavehi, S., Rahmani, R.: An anomaly-based framework for mitigating effects of DDoS attacks using a third party auditor in cloud computing environments. Clust. Comput. 23(4), 2609–2627 (2020). https://doi.org/10.1007/s10586-019-03031-y

    Article  Google Scholar 

  5. Mohamed, T. Otsuka, T., Ito, T.: Towards machine learning based IoT intrusion detection service. In: Recent Trends Future Technol. Appl. Intell. IEAAIE 2018 Lect. Notes Comput. Sci., vol. 10868 (2018). https://doi.org/10.1007/978-3-319-92058-0_56

  6. Shameli-Sendi, A., Cheriet, M., Hamou-Lhaj, A.: Taxonomy of intrusion risk assessment and response system | Elsevier Enhanced Reader. Comput. Secur. 45, 1–16 (2014). https://doi.org/10.1016/j.cose.2014.04.009

    Article  Google Scholar 

  7. Alsmadi, I., Burdwell, R., Aleroud, A., Wahbeh, A., Qudah, M., Al-Omari, A.: Practical Information Security: A Competency-Based Education Course. Springer, New York (2018)

    Book  Google Scholar 

  8. Moustafa, N., Hu, J., Slay, J.: A holistic review of Network Anomaly Detection Systems: a comprehensive survey | Elsevier Enhanced Reader. J. Netw. Comput. Appl. 128, 33–55 (2019). https://doi.org/10.1016/j.jnca.2018.12.006

    Article  Google Scholar 

  9. Guo, A., Xu, M., Ran, F., Wang, H.: A novel medical internet of things perception system based on visual image encryption and intrusion detection. Clust. Comput. 22(6), 13405–13413 (2019). https://doi.org/10.1007/s10586-018-1944-2

    Article  Google Scholar 

  10. Kim, D.-Y., Kim, S., Hassan, H., Park, J.H.: Radio resource management for data transmission in low power wide area networks integrated with large scale cyber physical systems. Clust. Comput. 20(2), 1831–1842 (2017). https://doi.org/10.1007/s10586-017-0841-4

    Article  Google Scholar 

  11. Deng, L., Li, D., Yao, X., Cox, D., Wang, H.: Mobile network intrusion detection for IoT system based on transfer learning algorithm. Clust. Comput. 22(4), 9889–9904 (2019). https://doi.org/10.1007/s10586-018-1847-2

    Article  Google Scholar 

  12. Tama, B.A., Comuzzi, M., Rhee, K.-H.: TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system. IEEE Access 7, 94497–94507 (2019). https://doi.org/10.1109/ACCESS.2019.2928048

    Article  Google Scholar 

  13. Okoli, C., Schabram, K.: A guide to conducting a systematic literature review of information systems research. SSRN Electron. J. (2010). https://doi.org/10.2139/ssrn.1954824

    Article  Google Scholar 

  14. Moustafa, N., Turnbull, B., Choo, K.-K.R.: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of Internet of Things. IEEE Internet Things J. 6(3), 4815–4830 (2019). https://doi.org/10.1109/JIOT.2018.2871719

    Article  Google Scholar 

  15. Pham, N.T., Foo, E., Suriadi, S., Jeffrey, H., Lahza, H.F.M.: Improving performance of intrusion detection system using ensemble methods and feature selection. In: Proceedings of the Australasian Computer Science Week Multiconference on—ACSW '18, Brisband, Queensland, Australia, 2018, pp. 1–6. https://doi.org/10.1145/3167918.3167951

  16. Kang, S.-H., Kim, K.J.: A feature selection approach to find optimal feature subsets for the network intrusion detection system. Clust. Comput. 19(1), 325–333 (2016). https://doi.org/10.1007/s10586-015-0527-8

    Article  Google Scholar 

  17. Radford, B.J., Richardson, B.D., Davis, S.E.: Sequence aggregation rules for anomaly detection in computer network traffic. ArXiv Prepr. ArXiv180503735, p. 13, 2018.

  18. "NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB." https://www.unb.ca/cic/datasets/nsl.html (accessed Nov. 20, 2019)

  19. Meidan, Y., et al.: N-BaIoT—network-based detection of iot botnet attacks using deep autoencoders. IEEE Pervasive Comput. 17(3), 12–22 (2018). https://doi.org/10.1109/MPRV.2018.03367731

    Article  Google Scholar 

  20. Al-Hawawreh, M., Moustafa, N., Sitnikova, E.: Identification of malicious activities in industrial internet of things based on deep learning models. J. Inf. Secur. Appl. 41, 1–11 (2018). https://doi.org/10.1016/j.jisa.2018.05.002

    Article  Google Scholar 

  21. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), 2015, pp. 1–6, https://doi.org/10.1109/MilCIS.2015.7348942

  22. Verma, A., Ranga, V.: ELNIDS: Ensemble Learning Based Network Intrusion Detection System for RPL based Internet of Things. In: Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 2019, pp. 1–6. https://doi.org/10.1109/IoT-SIU.2019.8777504

  23. Verma, A., Ranga, V.: RPL-NIDDS17—a data set for Intrusion Detection in RPL based 6LoWPAN Networks (Internet of Things). https://doi.org/10.5281/zenodo.1406034

  24. Vimala, S., Khanaa, V., Nalini, C.: A study on supervised machine learning algorithm to improvise intrusion detection systems for mobile ad hoc networks. Clust. Comput. 22(2), 4065–4074 (2019). https://doi.org/10.1007/s10586-018-2686-x

    Article  Google Scholar 

  25. Balamurugan, V., Saravanan, R.: Enhanced intrusion detection and prevention system on cloud environment using hybrid classification and OTS generation. Clust. Comput. 22(6), 13027–13039 (2019). https://doi.org/10.1007/s10586-017-1187-7

    Article  Google Scholar 

  26. Mukherjee, S., Sharma, N.: Intrusion detection using Naive bayes classifier with feature reduction | Elsevier enhanced reader. Procedia Technol. 4, 119–128 (2012). https://doi.org/10.1016/j.protcy.2012.05.017

    Article  Google Scholar 

  27. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, New York (2011)

    MATH  Google Scholar 

  28. Aljawarneh, S., Yassein, M.B., Aljundi, M.: An enhanced J48 classification algorithm for the anomaly intrusion detection systems. Clust. Comput. 22(5), 10549–10565 (2019). https://doi.org/10.1007/s10586-017-1109-8

    Article  Google Scholar 

  29. Miller, S.T., Busby-Earle, C.: Multi-perspective machine learning a classifier ensemble method for intrusion detection. In: Proceedings of the 2017 International Conference on Machine Learning and Soft Computing—ICMLSC '17, Ho Chi Minh City, Vietnam, 2017, pp. 7–12. https://doi.org/10.1145/3036290.3036303

  30. Gao, L., Li, F., Xu, X., Liu, Y.: Intrusion detection system using SOEKS and deep learning for in-vehicle security. Clust. Comput. 22(6), 14721–14729 (2019). https://doi.org/10.1007/s10586-018-2385-7

    Article  Google Scholar 

  31. UCI Machine Learning Repository: detection_of_IoT_botnet_attacks_N_BaIoT Data Set. https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT (accessed 27 Nov 2019)

  32. Siddiqui, A.J., Boukerche, A.: TempoCode-IoT: temporal codebook-based encoding of flow features for intrusion detection in Internet of Things. Clust. Comput. (2020). https://doi.org/10.1007/s10586-020-03153-8

    Article  Google Scholar 

  33. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009, pp. 1–6. https://doi.org/10.1109/CISDA.2009.5356528

  34. García, S., Zunino, A., Campo, M.: Survey on network-based botnet detection methods. Secur. Commun. Netw. 7(5), 878–903 (2014). https://doi.org/10.1002/sec.800

    Article  Google Scholar 

  35. Aldwairi, M., Mardini, W., Alhowaide, A.: Anomaly payload signature generation system based on efficient tokenization methodology. In: Int. J. Commun. Antenna Propag. IRECAP 2018, 2018.

  36. Figures/PerformanceMeasuresFigures.pdf master Alaa Alhowaide / Towards the Design of Real-Time Autonomous IoT NIDS. GitLab. https://gitlab.com/azalhowaide/towards-the-design-of-real-time-autonomous-iot-nids/-/blob/master/Figures/PerformanceMeasuresFigures.pdf (accessed 3 Mar 2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Alhowaide.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhowaide, A., Alsmadi, I. & Tang, J. Towards the design of real-time autonomous IoT NIDS. Cluster Comput 26, 2489–2502 (2023). https://doi.org/10.1007/s10586-021-03231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03231-5

Keywords