GARCH model prediction method based on Hessian matrix dynamic programming deep neural network | Cluster Computing Skip to main content
Log in

GARCH model prediction method based on Hessian matrix dynamic programming deep neural network

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

One futures market GARCH model prediction method based on Hessian matrix dynamic programming deep neural networks has been proposed to improve the prediction accuracy of futures market model. Firstly, data analysis has been made for futures market based on GARCH model. It takes twelve factors of today opening, the highest price, the lowest price, today closing, ups and downs, volume, SMA, 10BIAS, 10PSY, 10RSI, 10AR and 10BR as input variables, which is comparative series and then set up GARCH prediction model; secondly, Hessian dynamic programming deep learning network has been constructed, learning and training have been made for the established futures market GARCH model to improve prediction accuracy and efficiency; lastly, the effectiveness of this algorithm has been verified through simulation experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vrontos, I.: Evidence for hedge fund predictability from a multivariate Student’s full-factor GARCH model. J. Appl. Stat. 39(6), 1295–1321 (2010)

    Google Scholar 

  2. Würtz, D., Chalabi, Y., Luksan, L.: Parameter estimation of ARMA models with GARCH/APARCH errors an R and SPlus software implementation. J. Stat. Softw. 55, 28–33 (2006)

    Google Scholar 

  3. Jin, W.: On electricity spot price properties by t-innovation GARCH model. Telkomnika Indones. J. Electr. Eng. 11(10), 5675–5683 (2013)

    Google Scholar 

  4. Ramírez, O.A., Fadiga, M.: Forecasting agricultural commodity prices with asymmetric-error GARCH models. J. Agric. Resour. Econ. 28(1), 71–85 (2003)

    Google Scholar 

  5. Augustyniak, M.: Maximum likelihood estimation of the Markov-switching GARCH model. Comput. Stat. Data Anal. 76, 61–75 (2014)

    Google Scholar 

  6. Ben-Ameur, H., Cref, H., Montréal, M., et al.: A dynamic programming approach for pricing derivatives in the GARCH model. Manag. Sci. 55, 252–266 (2005)

    Google Scholar 

  7. Rebennack, S.: Combining sampling-based and scenario-based nested Benders decomposition methods: application to stochastic dual dynamic programming. Math. Progr. 156(1–2), 343–389 (2016)

    Google Scholar 

  8. Tullsen, D.M., Eggers, S.J., Emer, J.S., et al.: Exploiting choice: instruction fetch and issue on an implementable simultaneous multithreading processor. In: International Symposium on Computer Architecture. IEEE, pp. 191–191 (2005)

  9. Chaparro, P., Gonzalez, J., Magklis, G., et al.: Understanding the thermal implications of multi-core architectures. IEEE Trans. Parall. Distrib. Syst. 18(8), 1055–1065 (2007)

    Google Scholar 

  10. Hari, S.K.S., Adve, S.V., Naeimi, H., et al.: Relyzer: exploiting application-level fault equivalence to analyze application resiliency to transient faults. Comput. Arch. News 40(1), 123–134 (2012)

    Google Scholar 

  11. Freitas, F.D., Souza, A.F.D., Almeida, A.R.D.: Prediction-based portfolio optimization model using neural networks. Neurocomputing 72(10–12), 2155–2170 (2009)

    Google Scholar 

  12. Bollerslev, T., Jeffrey, M., Wooldridge, J.M.: Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econom. Rev. 11(2), 143–172 (1992)

    Google Scholar 

  13. Hamilton, J.D., Susmel, R.: Autoregressive conditional heteroskedasticity and changes in regime. J. Econom. 64(1–2), 307–333 (1994)

    Google Scholar 

  14. Sentana, E., Fiorentini, G.: Identification, estimation and testing of conditionally heteroskedastic factor models. J. Econom. 102(2), 143–164 (2001)

    Google Scholar 

  15. Patton, A.J.: A review of copula models for economic time series. J. Multivar. Anal. 110(5), 4–18 (2012)

    Google Scholar 

  16. Mizrach, B.: Inference and forecasting for ARFIMA models with an application to US and UK inflation. Stud. Nonlinear Dyn. Econom. 8(2), 1218 (2004)

    Google Scholar 

  17. Wang, L., Wu, W., Xu, Z., et al.: BLASX: a high performance level-3 BLAS library for heterogeneous multi-GPU computing. In: International Conference on Supercomputing. ACM, p. 20 (2016)

  18. Arunkumar, N., Ramkumar, K., Venkatraman, V., Abdulhay, E., Fernandes, S.L., Kadry, S., Segal, S.: Classification of focal and non focal EEG using entropies. Pattern Recogn. Lett. 94, 112–117 (2017)

    Google Scholar 

  19. Arunkumar, N., Kumar, K.R., Venkataraman, V.: Automatic detection of epileptic seizures using new entropy measures. J. Med. Imaging Health Inf. 6(3), 724–730 (2016)

    Google Scholar 

  20. Enas, A., Mazin-Abed, M., Dheyaa-Ahmed, I., Arunkumar, N., Venkatraman, V.: Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. J. Med. Syst. (2018). https://doi.org/10.1007/s10916-018-0912-y

    Google Scholar 

  21. Arunkumar, N., Ramkumar, K., Venkatraman, V.: Entropy features for focal EEG and non focal EEG. J. Comput. Sci. (2018). https://doi.org/10.1016/j.jocs.2018.02.002

    Google Scholar 

  22. Hamza, R., Muhammad, K., Arunkumar, N., González, G.R.: Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2762405

    Google Scholar 

  23. Fernandes, S.L., Gurupur, V.P., Sunder, N.R., Arunkumar, N., Kadry, S.: A novel nonintrusive decision support approach for heart rate measurement. Pattern Recognit. Lett. (2017). https://doi.org/10.1016/j.patrec.2017.07.002

    Google Scholar 

  24. Arunkumar, N., Ramkumar, K., Venkatraman, V., Abdulhay, E., Fernandes, S.L., Kadry, S., Segal, S.: Classification of focal and non focal EEG using entropies. Pattern Recognit. Lett. 94, 112–117 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, D. GARCH model prediction method based on Hessian matrix dynamic programming deep neural network. Cluster Comput 22 (Suppl 2), 4361–4366 (2019). https://doi.org/10.1007/s10586-018-1895-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1895-7

Keywords

Navigation