Secure error-correcting (SEC) schemes for network coding through McEliece cryptosystem | Cluster Computing Skip to main content
Log in

Secure error-correcting (SEC) schemes for network coding through McEliece cryptosystem

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The McEliece cryptosystem based on rank-metric codes is presented to offer both security and error-correction simultaneously in random network coding system. In the multicast network, the original messages are encoded with McEliece cryptosystem based on Gabidulin codes. Key distribution will be done one time. The rank codes decoding is performed in the sink. As long as \(t < {d_R}\left( C \right) /2\), the decoding is guaranteed, where t is the number of corrupted packets and \({d_R}\left( C \right) \) is the minimum rank distance of the rank codes C. Original messages are protected based on the cryptosystem. Compared with the rate \(\mathrm{{n}} - \mu - 2t\) in traditional SEC network codes, the rate approaches \(\mathrm{{n}} - 2t\) where \(\mu \) is the number of eavesdroppers. The rate won’t decrease as the number of eavesdropped edges increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Du, W.Z., Wang, X.M.: One kind of secret code encryption scheme based on maximum rank distance codes. Chin. J. Comput. 6, 650–653 (2001)

    MathSciNet  Google Scholar 

  2. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. Springer, Berlin (1991)

    Book  Google Scholar 

  3. Gibson, J.K.: Severely denting the gabidulin version of the mceliece public key cryptosystem. Des. Codes Cryptogr. 6(1), 37–45 (1995)

    Article  MathSciNet  Google Scholar 

  4. Islam, M.S., Kim, J.M.: Gpu-based fast error recovery for high speed data communication in media technology. Clust. Comput. 18(1), 93–101 (2015)

    Article  Google Scholar 

  5. Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Medard, M.: Resilient network coding in the presence of byzantine adversaries. In: INFOCOM 2007. IEEE International Conference on Computer Communications, pp. 616–624. IEEE (2007)

  6. Kliazovich, D., Bouvry, P., Khan, S.U.: Dens: data center energy-efficient network-aware scheduling. Clust. Comput. 16(1), 65–75 (2013)

    Article  Google Scholar 

  7. Mceliece, R.J.: A public-key cryptosystem based on algebraic. Coding Theor. 4244, 114–116 (1978)

    Google Scholar 

  8. Oliveira, P.F., Barros, J.: A network coding approach to secret key distribution. IEEE Trans. Inf. Forensics Secur. 3(3), 414–423 (2008)

    Article  Google Scholar 

  9. Overbeck, R.: A new structural attack for gpt and variants. In: International Conference on Cryptology in Malaysia, pp. 50–63 (2005)

  10. Overbeck, R.: Structural attacks for public key cryptosystems based on gabidulin codes. J. Cryptol. 21(2), 280–301 (2008)

    Article  MathSciNet  Google Scholar 

  11. Puchinger, S., Wachter-Zeh, A.: Sub-quadratic decoding of gabidulin codes. In: IEEE International Symposium on Information Theory (2016)

  12. Rashwan, H., Gabidulin, E.M., Honary, B.: Security of the gpt cryptosystem and its applications to cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)

    Article  Google Scholar 

  13. Silva, D.: On network error correction under a secret key model. In: IEEE International Symposium on Information Theory Proceedings, pp. 2656–2660 (2011)

  14. Silva, D., Kschischang, F.R.: Security for wiretap networks via rank-metric codes. In: IEEE International Symposium on Information Theory, pp. 176–180 (2007)

  15. Silva, D., Kschischang, F.R.: On metrics for error correction in network coding. IEEE Trans. Inf. Theor. 55(12), 5479–5490 (2008)

    Article  MathSciNet  Google Scholar 

  16. Silva, D., Kschischang, F.R.: Universal secure error-correcting schemes for network coding. In: IEEE International Symposium on Information Theory Proceedings, pp. 2428–2432 (2010)

  17. Silva, D., Kschischang, F.R., Koetter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theor. 54(9), 3951–3967 (2008)

    Article  MathSciNet  Google Scholar 

  18. Talooki, V.N., Bassoli, R., Lucani, D.E., Rodriguez, J., Fitzek, F.H.P., Marques, H., Tafazolli, R.: Security concerns and countermeasures in network coding based communication systems: a survey. Comput. Netw. 83, 422–445 (2015)

    Article  Google Scholar 

  19. Wang, L., Yang, Z., Xu, L., Yang, Y.: Ncvcs: network-coding-based video conference system for mobile devices in multicast networks. Ad Hoc Netw. 45, 13–21 (2016)

    Article  Google Scholar 

  20. Wu, T., Somani, A.K.: Attack monitoring and localization in all-optical networks. Clust. Comput. 9(4), 465–473 (2006)

    Article  Google Scholar 

  21. Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An efficient scheme for securing XOR network coding against pollution attacks. In: INFOCOM, pp. 406–414 (2009)

Download references

Acknowledgements

This work is supported by Suihua technology office program (SHKJ2015-015, SHKJ2015-014 ), National Science foundation of China (61571150), Education Office of Heilongjiang province science and technology program (2016-KYYWF-0937), Suihua university program (K1502003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Cai, S. Secure error-correcting (SEC) schemes for network coding through McEliece cryptosystem. Cluster Comput 22 (Suppl 5), 11047–11055 (2019). https://doi.org/10.1007/s10586-017-1294-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1294-5

Keywords

Navigation