How Human–Chatbot Interaction Impairs Charitable Giving: The Role of Moral Judgment | Journal of Business Ethics Skip to main content
Log in

How Human–Chatbot Interaction Impairs Charitable Giving: The Role of Moral Judgment

  • Original Paper
  • Published:
Journal of Business Ethics Aims and scope Submit manuscript

Abstract

Interactions between human beings and chatbots are gradually becoming part of our everyday social lives. It is still unclear how human–chatbot interactions (HCIs), compared to human–human interactions (HHIs), influence individual morality. Building on the dual-process theory of moral judgment, a secondary data analysis (Study 1), and two scenario-based experiments (Studies 2 and 3) provide sufficient evidence that HCIs (vs. HHIs) support utilitarian judgments (vs. deontological judgments), which reduce participants' donation amount. Study 3 further demonstrates that the negative effects of HCIs can be attenuated by inducing a social-oriented (vs. task-oriented) communication style in chatbots’ verbal language designs. These findings highlight the negative impacts of HCIs on relationships among human beings and suggest a practical intervention for nonprofit organization managers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annisette, L. E., & Lafreniere, K. D. (2017). Social media, texting, and personality: A test of the shallowing hypothesis. Personality and Individual Differences, 115, 154–158.

    Article  Google Scholar 

  • Ariza-Montes, A., Giorgi, G., Molina-Sánchez, H., & Pérez, J. F. (2020). The future of work in non-profit and religious organizations: Current and future perspectives and concerns. Frontiers in Psychology, 11, 623036.

    Article  Google Scholar 

  • Arroyo, D. C., & Yilmaz, Y. (2018). An open for replication study: The role of feedback timing in synchronous computer-mediated communication. Language Learning, 68(4), 942–972.

    Article  Google Scholar 

  • Broom, D. M. (2006). The evolution of morality. Applied Animal Behaviour Science, 100(1–2), 20–28.

    Article  Google Scholar 

  • Brown, S. P. (1995). The moderating effects of in-supplier/out-supplier status on organizational buyer attitudes. Journal of the Academy of Marketing Science, 23(3), 170–181.

    Article  Google Scholar 

  • Brscic, D., Kidokoro, H., Suehiro, T., & Kanda, T. (2015). Escaping from children’s abuse of social robots. In Proceedings of the ACM/IEEE international conference on human–robot interaction, 10th, Portland, OR, March 2–5 (pp. 59–66). ACM.

  • Castelo, N., Bos, M. W., & Lehmann, D. R. (2019). Task-dependent algorithm aversion. Journal of Marketing Research, 56(5), 809–825.

    Article  Google Scholar 

  • Chaar, B. B., & Lee, J. (2012). Role of socioeconomic status on consumers’ attitudes towards DTCA of prescription medicines in Australia. Journal of Business Ethics, 105(4), 447–460.

    Article  Google Scholar 

  • Chan, A. P. H., & Tung, V. W. S. (2019). Examining the effects of robotic service on brand experience: The moderating role of hotel segment. Journal of Travel and Tourism Marketing, 36(4), 458–468.

    Article  Google Scholar 

  • Chan, K. W., Yim, C. K., & Lam, S. S. K. (2010). Is customer participation in value creation a double-edged sword? Evidence from professional financial services across cultures. Journal of Marketing, 74(3), 48–64.

    Article  Google Scholar 

  • Chattaraman, V., Kwon, W., Gilbert, J. E., & Ross, K. (2019). Should AI-based, conversational digital assistants employ social- or task-oriented interaction style? A task-competency and reciprocity perspective for older adults. Computers in Human Behavior, 90, 315–330.

    Article  Google Scholar 

  • Cui, R., Li, M., & Zhang, S. (2020). AI and procurement. Manufacturing and Service Operations Management. Available at SSRN. https://ssrn.com/abstract=3570967 or https://doi.org/10.2139/ssrn.3570967

  • Dabholkar, P. A., van Dolen, W. M., & de Ruyter, K. (2009). A dual-sequence framework for B2C relationship formation: Moderating effects of employee communication style in online group chat. Psychology and Marketing, 26(2), 145–174.

    Article  Google Scholar 

  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

    Article  Google Scholar 

  • Deloitte. (2019a). Conversation starters: Conversational AI makes its business case. https://www2.deloitte.com/global/en/insights/focus/cognitive-technologies/conversational-artificial-intelligence-makes-its-business-case.html

  • Deloitte. (2019b). Can AI be ethical? Why enterprises shouldn’t wait for AI regulation. https://www2.deloitte.com/global/en/insights/focus/signals-for-strategists/ethical-artificial-intelligence.html

  • Deloitte. (2021). Conversational AI: Five vectors of progress. https://www2.deloitte.com/global/en/insights/focus/signals-for-strategists/the-future-of-conversational-ai.html

  • Diab, D. L., Pui, S., Yankelevich, M., & Highhouse, S. (2011). Lay perceptions of selection decision aids in US and non-US samples. International Journal of Selection and Assessment, 19(2), 209–216.

    Article  Google Scholar 

  • Fischer, J. (2004). Social responsibility and ethics: Clarifying the concepts. Journal of Business Ethics, 52(4), 381–390.

    Article  Google Scholar 

  • Gallier, C., Reif, C., & Römer, D. (2017). Repeated pro-social behavior in the presence of economic interventions. Journal of Behavioral and Experimental Economics, 69, 18–28.

    Article  Google Scholar 

  • Gleichgerrcht, E., & Young, L. (2013). Low levels of empathic concern predict utilitarian moral judgment. PLoS ONE, 8(4), e60418.

    Article  Google Scholar 

  • Greene, J. D., Morelli, S. A., Lowenberg, K., Nystrom, L. E., & Cohen, J. D. (2008). Cognitive load selectively interferes with utilitarian moral judgment. Cognition, 107(3), 1144–1154.

    Article  Google Scholar 

  • Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44(2), 389–400.

    Article  Google Scholar 

  • Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105–2108.

    Article  Google Scholar 

  • Hair, J. F. Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis (3rd ed.). Macmillan.

  • Hayes, A. F. (2012). PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling.

  • Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 1–22.

    Article  Google Scholar 

  • He, Y., Zhang, J., Zhou, Y., & Yang, Z. (2019). Monkey see, monkey do?: The effect of construal level on consumers’ reactions to others’ unethical behavior. Journal of Business Ethics, 156(2), 455–472.

    Article  Google Scholar 

  • Hecht, M., & Zitzmann, S. (2020). Sample size recommendations for continuous-time models: Compensating shorter time series with larger numbers of persons and vice versa. Structural Equation Modeling: A Multidisciplinary Journal, 28(2), 1–8.

    Google Scholar 

  • Hermann, E. (2021). Leveraging artificial intelligence in marketing for social good—An ethical perspective. Journal of Business Ethics. https://doi.org/10.1007/s10551-021-04843-y

    Article  Google Scholar 

  • Hertz, N., & Wiese, E. (2019). Good advice is beyond all price, but what if it comes from a machine? Journal of Experimental Psychology: Applied, 25(3), 386–395.

    Google Scholar 

  • Higgins, E. T., Friedman, R. S., Harlow, R. E., Idson, L. C., Ayduk, O. N., & Taylor, A. (2001). Achievement orientations from subjective histories of success: Promotion pride versus prevention pride. European Journal of Social Psychology, 31(1), 3–23.

    Article  Google Scholar 

  • Hill, J., Randolph Ford, W., & Farreras, I. G. (2015). Real conversations with artificial intelligence: A comparison between human–human online conversations and human–chatbot conversations. Computers in Human Behavior, 49, 245–250.

    Article  Google Scholar 

  • Hoffman, G., Forlizzi, J., Ayal, S., Steinfeld, A., Antanitis, J., Hochman, G., ..., Finkenaur, J. (2015, March). Robot presence and human honesty: Experimental evidence. In 2015 10th ACM/IEEE international conference on human–robot interaction (HRI) (pp. 181–188). IEEE.

  • Hoffman, D. L., & Novak, T. P. (2018). Consumer and object experience in the internet of things: An assemblage theory approach. Journal of Consumer Research, 44(6), 1178–1204.

    Article  Google Scholar 

  • Jami, A., Kouchaki, M., & Gino, F. (2021). I own, so I help out: How psychological ownership increases prosocial behavior. The Journal of Consumer Research, 47(5), 698–715.

    Article  Google Scholar 

  • Janoff-Bulman, R., Sheikh, S., & Hepp, S. (2009). Proscriptive versus prescriptive morality: Two faces of moral regulation. Journal of Personality and Social Psychology, 96(3), 521–537.

    Article  Google Scholar 

  • Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399.

    Article  Google Scholar 

  • Keeling, K., McGoldrick, P., & Beatty, S. (2010). Avatars as salespeople: Communication style, trust, and intentions. Journal of Business Research, 63(8), 793–800.

    Article  Google Scholar 

  • Kim, S., & McGill, A. L. (2011). Gaming with Mr. slot or gaming the slot machine? Power, anthropomorphism, and risk perception. The Journal of Consumer Research, 38(1), 94–107.

    Article  Google Scholar 

  • LaMothe, E., & Bobek, D. (2020). Are individuals more willing to lie to a computer or a human? Evidence from a tax compliance setting. Journal of Business Ethics, 167, 1–24.

    Article  Google Scholar 

  • Laufer, D., Silvera, D. H., McBride, J. B., & Schertzer, S. M. B. (2010). Communicating charity successes across cultures: Highlighting individual or collective achievement? European Journal of Marketing, 44(9), 1322–1333.

    Article  Google Scholar 

  • Lee, L., Piliavin, J. A., & Call, V. R. (1999). Giving time, money, and blood: Similarities and differences. Social Psychology Quarterly, 62(3), 276–290.

    Article  Google Scholar 

  • Lemay, E. P., Jr., Ryan, J. E., & Teneva, N. (2021). Pursuing interpersonal value: An interdependence perspective. Journal of Personality and Social Psychology, 120(3), 716–744.

    Article  Google Scholar 

  • Li, X., Chan, K. W., & Kim, S. (2019). Service with emoticons: How customers interpret employee use of emoticons in online service encounters. Journal of Consumer Research, 45(5), 973–987.

    Article  Google Scholar 

  • Lockwood, P. L., Hamonet, M., Zhang, S. H., Ratnavel, A., Salmony, F. U., Husain, M., & Apps, M. A. (2017). Prosocial apathy for helping others when effort is required. Nature Human Behaviour, 1(7), 0131.

    Article  Google Scholar 

  • Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to medical artificial intelligence. Journal of Consumer Research, 46(4), 629–650.

    Article  Google Scholar 

  • Luangrath, A. W., Peck, J., & Barger, V. A. (2017). Textual paralanguage and its implications for marketing communications. Journal of Consumer Psychology, 27(1), 98–107.

    Article  Google Scholar 

  • Luo, X., Qin, M. S., Fang, Z., & Qu, Z. (2021). Artificial intelligence coaches for sales agents: Caveats and solutions. Journal of Marketing, 85(2), 14–32.

    Article  Google Scholar 

  • Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937–947.

    Google Scholar 

  • Macdonnell, R., & White, K. (2015). How construals of money versus time impact consumer charitable giving. Journal of Consumer Research, 42(4), 551–563.

    Google Scholar 

  • Markets and Markets. (2021). Conversational AI market by component (solutions and services), type (chatbots and IVA), technology (NLP and ASR), business function (sales and marketing, and operations), mode of integration, vertical, and region—Global Forecast to 2026. Markets and Markets. https://www.marketsandmarkets.com/Market-Reports/conversational-ai-market-49043506.html

  • Mende, M., Scott, M. L., van Doorn, J., Grewal, D., & Shanks, I. (2019). Service robots rising: How humanoid robots influence service experiences and elicit compensatory consumer responses. Journal of Marketing Research, 56(4), 535–556.

    Article  Google Scholar 

  • Mou, Y., & Xu, K. (2017). The media inequality: Comparing the initial human–human and human–AI social interactions. Computers in Human Behavior, 72, 432–440.

    Article  Google Scholar 

  • Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The ethical implications of using artificial intelligence in auditing. Journal of Business Ethics, 167(3), 209–234.

    Article  Google Scholar 

  • Neumayr, M., & Handy, F. (2019). Charitable giving: What influences donors’ choice among different causes? VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 30(4), 783–799.

    Article  Google Scholar 

  • Niculescu, A., van Dijk, B., Nijholt, A., Li, H., & See, S. L. (2013). Making social robots more attractive: The effects of voice pitch, humor and empathy. International Journal of Social Robotics, 5(2), 171–191.

    Article  Google Scholar 

  • Önkal, D., Goodwin, P., Thomson, M., Gönül, S., & Pollock, A. (2009). The relative influence of advice from human experts and statistical methods on forecast adjustments. Journal of Behavioral Decision Making, 22(4), 390–409.

    Article  Google Scholar 

  • Patrick, V. M., Lancellotti, M., & Hagtvedt, H. (2009). Getting a second chance: The role of imagery in the influence of inaction regret on behavioral intent. Journal of the Academy of Marketing Science, 37(2), 181–190.

    Article  Google Scholar 

  • Pham, C., & Septianto, F. (2019). A smile—The key to everybody’s heart? The interactive effects of image and message in increasing charitable behavior. European Journal of Marketing, 54(2), 261–281.

    Article  Google Scholar 

  • Rand, D. G., Greene, J. D., & Nowak, M. A. (2012). Spontaneous giving and calculated greed. Nature, 489(7416), 427–430.

    Article  Google Scholar 

  • Reed, A., Aquino, K., & Levy, E. (2007). Moral identity and judgments of charitable behaviors. Journal of Marketing, 71(1), 178–193.

    Article  Google Scholar 

  • Richins, M. L. (1997). Measuring emotions in the consumption experience. Journal of Consumer Research, 24(2), 127–146.

    Article  Google Scholar 

  • Robiady, N. D., Windasari, N. A., & Nita, A. (2021). Customer engagement in online social crowdfunding: The influence of storytelling technique on donation performance. International Journal of Research in Marketing, 38(2), 492–500.

    Article  Google Scholar 

  • Roy, R., & Naidoo, V. (2021). Enhancing chatbot effectiveness: The role of anthropomorphic conversational styles and time orientation. Journal of Business Research, 126, 23–34.

    Article  Google Scholar 

  • Ryu, J., & Baylor, A. L. (2005). The psychometric structure of pedagogical agent persona. Technology, Instruction, Cognition and Learning, 2(4), 291.

    Google Scholar 

  • Saine, R., Kull, A. J., Besharat, A., & Varki, S. (2019). I see me: The role of observer imagery in reducing consumer transgressions. Journal of Business Ethics, 168(4), 1–12.

    Google Scholar 

  • Salvini, P., Ciaravella, G., Yu, W., Ferri, G., Manzi, A., Mazzolai, B., Laschi, C., Oh, S. R., & Dario, P. (2010). How safe are service robots in urban environments? Bullying a robot. In Proceedings of the 19th IEEE international symposium on robot and human interactive communication, Pisa, Italy, September 13–15 (pp. 1–7). IEEE.

  • Sands, S., Ferraro, C., Campbell, C., & Tsao, H. (2021). Managing the human–chatbot divide: How service scripts influence service experience. Journal of Service Management, 32(2), 246–264.

    Article  Google Scholar 

  • Sanghera, B. (2016). Charitable giving and lay morality: Understanding sympathy, moral evaluations and social positions. The Sociological Review, 64(2), 294–311.

    Article  Google Scholar 

  • Seele, P., Dierksmeier, C., Hofstetter, R., & Schultz, M. D. (2021). Mapping the ethicality of algorithmic pricing: A review of dynamic and personalized pricing. Journal of Business Ethics, 170(4), 697–719.

    Article  Google Scholar 

  • Shechtman, N., & Horowitz, L. M. (2003, April). Media inequality in conversation: How people behave differently when interacting with computers and people. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 281–288).

  • Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14–24.

    Article  Google Scholar 

  • Singhapakdi, A., Vitell, S. J., & Kraft, K. L. (1996). Moral intensity and ethical decision-making of marketing professionals. Journal of Business Research, 36, 245–255.

    Article  Google Scholar 

  • Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. Journal of Retailing, 77(2), 203–220.

    Article  Google Scholar 

  • Tezer, A., & Bodur, H. O. (2020). The green consumption effect: How using green products improves consumption experience. The Journal of Consumer Research, 47(1), 25–39.

    Article  Google Scholar 

  • Tomasello, M., & Vaish, A. (2013). Origins of human cooperation and morality. Annual Review of Psychology, 64, 231–255.

    Article  Google Scholar 

  • Traeger, M. L., Sebo, S. S., Jung, M., Scassellati, B., & Christakis, N. A. (2020). Vulnerable robots positively shape human conversational dynamics in a human–robot team. Proceedings of the National Academy of Sciences of USA, 117(12), 6370–6375.

    Article  Google Scholar 

  • Van Esch, P., & Cui, Y. (2021). Does consumer promiscuity influence purchase intent? The role of artificial intelligence (AI), change seeking, and pride. Journal of the Association for Consumer Research. https://doi.org/10.1086/714503

    Article  Google Scholar 

  • Van Esch, P., Cui, Y., & Jain, S. P. (2020). Stimulating or intimidating: The effect of AI-enabled in-store communication on consumer patronage likelihood. Journal of Advertising, 50(1), 63–80.

    Article  Google Scholar 

  • Van Esch, P., Cui, Y., & Jain, S. P. (2021). The effect of political ideology and message frame on donation intent during the COVID-19 pandemic. Journal of Business Research, 125, 201–213.

    Article  Google Scholar 

  • Venkatesh, V., Thong, J., & Xin, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178.

    Article  Google Scholar 

  • Wang, Z., Mao, H., Li, Y. J., & Liu, F. (2017). Smile big or not? Effects of smile intensity on perceptions of warmth and competence. Journal of Consumer Research, 43(5), 787–805.

    Google Scholar 

  • Williams, K. C., & Spiro, R. L. (1985). Communication style in the salesperson–customer dyad. Journal of Marketing Research, 22(4), 434–442.

    Article  Google Scholar 

  • Winterich, K. P., Mittal, V., & Aquino, K. (2013). When does recognition increase charitable behavior? Toward a moral identity-based model. Journal of Marketing, 77(3), 121–134.

    Article  Google Scholar 

  • Xu, Z. X., & Ma, H. K. (2016). How can a deontological decision lead to moral behavior? The moderating role of moral identity. Journal of Business Ethics, 137(3), 537–549.

    Article  Google Scholar 

  • Xu, Y., Shieh, C. H., van Esch, P., & Ling, I. L. (2020). AI customer service: Task complexity, problem-solving ability, and usage intention. Australasian Marketing Journal, 28(4), 189–199.

    Article  Google Scholar 

  • Yi, D. T. (2010). Determinants of fundraising efficiency of nonprofit organizations: Evidence from US public charitable organizations. Managerial and Decision Economics, 31(7), 465–475.

    Article  Google Scholar 

  • Zhang, Y., Lin, C., & Yang, J. (2019). Time or money? The influence of warm and competent appeals on donation intentions. Sustainability, 11(22), 6228.

    Article  Google Scholar 

  • Zou, L. W., & Chan, R. Y. K. (2019). Why and when do consumers perform green behaviors? An examination of regulatory focus and ethical ideology. Journal of Business Research, 94, 113–127.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Grants from National Natural Science Foundation of China (Project Nos. 71672069, 71972079, 71772074 and 72072152) and the Research Grant Council of Hong Kong SAR (CityU 11502218) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanqiong He or Zhilin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Fei, Z., He, Y. et al. How Human–Chatbot Interaction Impairs Charitable Giving: The Role of Moral Judgment. J Bus Ethics 178, 849–865 (2022). https://doi.org/10.1007/s10551-022-05045-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10551-022-05045-w

Keywords

Navigation