Abstract
Simultaneous recording of electroencephalography and functional magnetic resonance imaging (EEG–fMRI) has recently been applied for mapping the hemodynamic changes related to epileptic activity. The aim of this study is to compare the hemodynamic response function (HRF) to epileptic spikes in patients with focal cortical dysplasia (FCD) and those with hippocampal sclerosis (HS). In EEG–fMRI studies, the HRF represents the temporal evolution of blood oxygenation level-dependent signal changes. Several studies demonstrated that amplitude and latency of the HRF are variable in patients with epilepsy. However, the consistency of HRF parameters with underlying brain pathology is unknown. In this study, we examined 14 patients with FCD and 12 with unilateral HS selected from our EEG–fMRI database and compared the amplitude and latency of the HRF peak. We analyzed (1) HRFs in peak activation clusters, (2) HRFs in peak deactivation clusters, and (3) the maximum absolute responses within the EEG spike field, activation or deactivation. We found that the HRF peak amplitude in deactivation clusters was larger in the HS group than in the FCD when the deactivation occurred in default mode network (DMN) regions. This result suggests that spikes in patients with HS affect the DMN more strongly than those with FCD. However, if we focus on the maximum absolute t-value in the spike field, there is no significant difference between the two groups. The current study indicates that it is not necessary to use different HRF models for EEG–fMRI studies in patients with FCD and HS.
Similar content being viewed by others
References
An D, Fahoum F, Hall J, Olivier A, Gotman J, Dubeau F (2013) Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia. doi:10.1111/epi.12434
Bagshaw AP, Aghakhani Y, Benar CG, Kobayashi E, Hawco C, Dubeau F, Pike GB, Gotman J (2004) EEG–fMRI of focal epileptic spikes: analysis with multiple haemodynamic functions and comparison with gadolinium-enhanced MR angiograms. Hum Brain Mapp 22(3):179–192. doi:10.1002/hbm.20024
Benar CG, Gross DW, Wang Y, Petre V, Pike B, Dubeau F, Gotman J (2002) The BOLD response to interictal epileptiform discharges. NeuroImage 17(3):1182–1192
Benar C, Aghakhani Y, Wang Y, Izenberg A, Al-Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG–fMRI for epilepsy. Clin Neurophysiol 114(3):569–580
Binnie CD (2003) Cognitive impairment during epileptiform discharges: is it ever justifiable to treat the EEG? Lancet Neurol 2(12):725–730
Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. doi:10.1196/annals.1440.011
Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853. doi:10.1073/pnas.0601417103
Fahoum F, Lopes R, Pittau F, Dubeau F, Gotman J (2012) Widespread epileptic networks in focal epilepsies: EEG–fMRI study. Epilepsia 53(9):1618–1627. doi:10.1111/j.1528-1167.2012.03533.x
Flanagan D, Badawy RA, Jackson GD (2013) EEG–fMRI in focal epilepsy: local activation and regional networks. Clin Neurophysiol. doi:10.1016/j.clinph.2013.06.182
Gholipour T, Moeller F, Pittau F, Dubeau F, Gotman J (2011) Reproducibility of interictal EEG–fMRI results in patients with epilepsy. Epilepsia 52(3):433–442. doi:10.1111/j.1528-1167.2010.02768.x
Holmes GL, Lenck-Santini PP (2006) Role of interictal epileptiform abnormalities in cognitive impairment. Epilepsy Behav 8(3):504–515. doi:10.1016/j.yebeh.2005.11.014
Jacobs J, Hawco C, Kobayashi E, Boor R, LeVan P, Stephani U, Siniatchkin M, Gotman J (2008) Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy. NeuroImage 40(2):601–614. doi:10.1016/j.neuroimage.2007.11.056
Jacobs J, Levan P, Moeller F, Boor R, Stephani U, Gotman J, Siniatchkin M (2009) Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG–fMRI. NeuroImage 45(4):1220–1231. doi:10.1016/j.neuroimage.2009.01.014
Kleen JK, Scott RC, Holmes GL, Roberts DW, Rundle MM, Testorf M, Lenck-Santini PP, Jobst BC (2013) Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology 81(1):18–24. doi:10.1212/WNL.0b013e318297ee50
Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J (2006) Negative BOLD responses to epileptic spikes. Hum Brain Mapp 27(6):488–497. doi:10.1002/hbm.20193
Laufs H, Hamandi K, Salek-Haddadi A, Kleinschmidt AK, Duncan JS, Lemieux L (2007) Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp 28(10):1023–1032. doi:10.1002/hbm.20323
Lemieux L, Laufs H, Carmichael D, Paul JS, Walker MC, Duncan JS (2008) Noncanonical spike-related BOLD responses in focal epilepsy. Hum Brain Mapp 29(3):329–345. doi:10.1002/hbm.20389
Lu Y, Bagshaw AP, Grova C, Kobayashi E, Dubeau F, Gotman J (2006) Using voxel-specific hemodynamic response function in EEG–fMRI data analysis. NeuroImage 32(1):238–247. doi:10.1016/j.neuroimage.2005.11.040
Lu YL, Grova C, Kobayashi E, Dubeau F, Gotman J (2007) Using voxel-specific hemodynamic response function in EEG–fMRI data analysis: an estimation and detection model. NeuroImage 34(1):195–203. doi:10.1016/j.neuroimage.2006.08.023
Lv Y, Wang Z, Cui L, Ma D, Meng H (2013) Cognitive correlates of interictal epileptiform discharges in adult patients with epilepsy in China. Epilepsy Behav 29(1):205–210. doi:10.1016/j.yebeh.2013.07.014
Manganotti P, Formaggio E, Gasparini A, Cerini R, Bongiovanni LG, Storti SF, Mucelli RP, Fiaschi A, Avesani M (2008) Continuous EEG–fMRI in patients with partial epilepsy and focal interictal slow-wave discharges on EEG. Magn Reson Imaging 26(8):1089–1100. doi:10.1016/j.mri.2008.02.023
Meindl T, Teipel S, Elmouden R, Mueller S, Koch W, Dietrich O, Coates U, Reiser M, Glaser C (2010) Test-retest reproducibility of the default-mode network in healthy individuals. Hum Brain Mapp 31(2):237–246. doi:10.1002/hbm.20860
Moeller F, Tyvaert L, Nguyen DK, LeVan P, Bouthillier A, Kobayashi E, Tampieri D, Dubeau F, Gotman J (2009) EEG–fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology 73(23):2023–2030. doi:10.1212/WNL.0b013e3181c55d17
Mott RT, Thore CR, Moody DM, Glazier SS, Ellis TL, Brown WR (2009) Reduced ratio of afferent to total vascular density in mesial temporal sclerosis. J Neuropathol Exp Neurol 68(10):1147–1154. doi:10.1097/NEN.0b013e3181b9d75f
Muthukumaraswamy SD, Edden RA, Jones DK, Swettenham JB, Singh KD (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci USA 106(20):8356–8361. doi:10.1073/pnas.0900728106
Muthukumaraswamy SD, Evans CJ, Edden RA, Wise RG, Singh KD (2012) Individual variability in the shape and amplitude of the BOLD-HRF correlates with endogenous GABAergic inhibition. Hum Brain Mapp 33(2):455–465. doi:10.1002/hbm.21223
Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10(12):1515–1517. doi:10.1038/nn2001
Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872
Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812. doi:10.1016/S0006-3495(93)81441-3
Pittau F, Dubeau F, Gotman J (2012) Contribution of EEG/fMRI to the definition of the epileptic focus. Neurology 78(19):1479–1487. doi:10.1212/WNL.0b013e3182553bf7
Pittau F, Fahoum F, Zelmann R, Dubeau F, Gotman J (2013) Negative BOLD response to interictal epileptic discharges in focal epilepsy. Brain Topogr 26(4):627–640. doi:10.1007/s10548-013-0302-1
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682. doi:10.1073/pnas.98.2.676
Rathakrishnan R, Moeller F, Levan P, Dubeau F, Gotman J (2010) BOLD signal changes preceding negative responses in EEG–fMRI in patients with focal epilepsy. Epilepsia 51(9):1837–1845. doi:10.1111/j.1528-1167.2010.02643.x
Richter W, Richter M (2003) The shape of the fMRI BOLD response in children and adults changes systematically with age. NeuroImage 20(2):1122–1131. doi:10.1016/S1053-8119(03)00347-1
Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, Duncan JS, Fish DR, Lemieux L (2006) Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res 1088(1):148–166. doi:10.1016/j.brainres.2006.02.098
Storti SF, Formaggio E, Bertoldo A, Manganotti P, Fiaschi A, Toffolo GM (2013) Modelling hemodynamic response function in epilepsy. Clin Neurophysiol. doi:10.1016/j.clinph.2013.05.024
Thornton R, Laufs H, Rodionov R, Cannadathu S, Carmichael DW, Vulliemoz S, Salek-Haddadi A, McEvoy AW, Smith SM, Lhatoo S, Elwes RD, Guye M, Walker MC, Lemieux L, Duncan JS (2010) EEG correlated functional MRI and postoperative outcome in focal epilepsy. J Neurol Neurosurg Psychiatry 81(8):922–927. doi:10.1136/jnnp.2009.196253
van Bogaert P, Urbain C, Galer S, Ligot N, Peigneux P, De Tiege X (2012) Impact of focal interictal epileptiform discharges on behaviour and cognition in children. Neurophysiol Clin 42(1–2):53–58. doi:10.1016/j.neucli.2011.11.004
van Houdt PJ, de Munck JC, Zijlmans M, Huiskamp G, Leijten FS, Boon PA, Ossenblok PP (2010) Comparison of analytical strategies for EEG-correlated fMRI data in patients with epilepsy. Magn Reson Imaging 28(8):1078–1086. doi:10.1016/j.mri.2010.03.022
van Houdt PJ, de Munck JC, Leijten FS, Huiskamp GJ, Colon AJ, Boon PA, Ossenblok PP (2013) EEG–fMRI correlation patterns in the presurgical evaluation of focal epilepsy: a comparison with electrocorticographic data and surgical outcome measures. NeuroImage 75:238–248. doi:10.1016/j.neuroimage.2013.02.033
Vigneau-Roy N, Bernier M, Descoteaux M, Whittingstall K (2013) Regional variations in vascular density correlate with resting-state and task-evoked blood oxygen level-dependent signal amplitude. Hum Brain Mapp. doi:10.1002/hbm.22301
Wintermark P, Lechpammer M, Warfield SK, Kosaras B, Takeoka M, Poduri A, Madsen JR, Bergin AM, Whalen S, Jensen FE (2013) Perfusion imaging of focal cortical dysplasia using arterial spin labeling: correlation with histopathological vascular density. J Child Neurol. doi:10.1177/0883073813488666
Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FS (2007) EEG–fMRI in the preoperative work-up for epilepsy surgery. Brain 130(Pt 9):2343–2353. doi:10.1093/brain/awm141
Acknowledgments
This study was supported by CIHR Grant MOP-38079. We are grateful to Ms. Natalja Zazubovits, EEG technicians and MRI technologists for their assistance.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Watanabe, S., An, D., Safi-Harb, M. et al. Hemodynamic Response Function (HRF) in Epilepsy Patients with Hippocampal Sclerosis and Focal Cortical Dysplasia. Brain Topogr 27, 613–619 (2014). https://doi.org/10.1007/s10548-014-0362-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10548-014-0362-x