Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter | Boundary-Layer Meteorology Skip to main content
Log in

Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments – two over land and two over the sea – are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atmospheric Radiation Measurement (ARM) Program: 1999a, Nauru99 Science and Operations WWW Site. http://www.arm.gov/iops/1999/twp1999nauru/nauru99.html, 1999

  • Atmospheric Radiation Measurement (ARM) Program: 1999b, Science and Operations Plan (Draft) Nauru99. http://www.gim.bnl.gov/cruises/mirai/n99mr/mirai log/n99miraibnl/N99OpsPlan.pdf, 1999

  • Atmospheric Radiation Measurement (ARM) Program: 2000, DIAL/Raman Lidar Validation Intercomparison Campaign. http://www.arm.gov/iops/2000/sgp2000dialrl/dialrl2000.html, 2000

  • Banta R.M., White A.B. (2003). ‘Mixing-Height Differences Between Land Use Types: Dependence on Wind Speed’. J. Geophys. Res. 108 (D10):11-1–11-10

    Article  Google Scholar 

  • Batchvarova E., Gryning S. (1994). ‘An Applied Model for the Height of the Daytime Mixed Layer and the Entrainment Zone’. Boundary-Layer Meteorol. 71:311–323

    Article  Google Scholar 

  • Beyrich F., Gryning S.-E. (1998). ‘Estimation of the Entrainment Zone Depth in a Shallow Convective Boundary Layer from Sodar Data’. J. Appl. Meteorol. 37:255–268

    Article  Google Scholar 

  • Beyrich F., Bange J., Berger F.H., Bernhofer C., Foken T., Hennemuth B., Leps J.-P., Lüdi A., Meijninger W.M.L., Mengelkamp H.-T. (2004). ‘Energy and Water Vapour Fluxes Over a Heterogeneous Land Surface: The LITFASS-2003 Experiment. Proceedings of 16th Symposium on Boundary Layers and Turbulence:Portland (ME), USA, Amer. Meteorol. Soc

  • Bösenberg J. (1998). ‘Ground-based Differential Absorption Lidar for Water-vapor and Temperature Profiling: Methodology’. Appl. Optics 37:3845–3860

    Article  Google Scholar 

  • Cleugh H.A., Grimmond C.S.B. (2001). ‘Modelling Regional Scale Surface Energy Exchanges and CBL Growth in a Heterogeneous, Urban–Rural Landscape’. Boundary-Layer Meteorol. 98:1–31

    Article  Google Scholar 

  • Cohn S., Angevine W. (1999). ‘Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars’. J. Appl. Meteorol. 39:1233–1247

    Article  Google Scholar 

  • Davis K., Gamage N., Hagelberg C., Kiemle C., Lenschow D., Sullivan P. (1999). ‘An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations’. J. Atmos. Oceanic. Tech. 17:1455–1468

    Article  Google Scholar 

  • Ertel K. (2004). Application and Development of Water Vapor DIAL Systems. Dissertation, Universität Hamburg, http://www.sub.uni-hamburg.de/opus/volltexte/2004/2027

  • Flamant C., Pelon J., Flamant P., Durand P. (1997). ‘Lidar Detection of the Entrainment Zone Thickness at the Top of the Unstable Marine Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 83:247–284

    Article  Google Scholar 

  • Flamant C., Georgelin M., Menut L., Pelon J., Bougelault P. (2001). ‘The Atmospheric Boundary Layer Structure Within a Cold Air Outbreak: Comparison of In Situ, Lidar and Satellite Measurements with Three-Dimensional Simulations’. Boundary-Layer Meteorol. 99:85–103

    Article  Google Scholar 

  • Garratt, J. R.: 1992. The Atmospheric Boundary Layer. Cambridge University Press, 316 pp

  • Joffre S.M., Kangas M., Heikinheimo M., Kitaigorodskii S.A. (2001). ‘Variability of the Stable and Unstable Atmospheric Boundary-Layer Height and Its Scales Over a Boreal Forest’. Boundary-Layer Meteorol. 99:429–450

    Article  Google Scholar 

  • Johansson C., Hennemuth B., Bösenberg J., Linné H., Smedman A.-S. (2005). ‘Double-Layer Structure in the Boundary Layer Over the Baltic Sea’. Boundary-Layer Meteorol. 99:389–412

    Article  Google Scholar 

  • Lammert A. (2004). Untersuchung der turbulenten Grenzschicht mit Laserfernerkundung. Dissertation, Universität Hamburg, http://www.sub.uni-hamburg.de/opus/volltexte/2004/2103.

  • Lammert, A. and Bösenberg, J.: 2005, ‘Determination of the Convective Boundary Layer Height with Laser Remote Sensing’. Boundary-Layer Meteorol. In press

  • Revercomb H.E., Turner D.D., Tobin D.C., Knuteson R.O., Feltz W.F., Barnard J., Bösenberg J., Clough S., Cook D., Ferrare R., Goldsmith J., Gutman S., Halthore R., Lesht B., Liljegren J., Linne H., Michalsky J., Morris V., Porch W., Richardson S., Schmid B., Splitt M., Van Hove T., Westwater E., Whiteman D. (2003). ‘The ARM Program’s Water Vapor Intensive Observation Periods – Overview, Initial Accomplishments, and Future Challenges’. Bull. Amer. Meteorol. Soc. 84 (2):217–236

    Article  Google Scholar 

  • Seibert P., Beyrich F., Gryning S.E., Joffre S., Rasmussen A., Tercier P. (2000). ‘Review and Intercomparison of Operational Methods for the Determination of the Mixing Height’. Atmos. Environ. 34:1001–1027

    Article  Google Scholar 

  • Smedman A., Gryning S.-E., Bösenberg J., Tammelin B., Andersson T., Omstedt A., Bumke K. (1998). PEP in BALTEX. a pilot study of evaporation and precipitation in the Baltic Sea. In Second Study Conf. on BALTEX, pages 206–207, Rügen, Germany

  • Sorbjan Z. (1989). Structure of the Atmospheric Boundary Layer. Prentice Hall, NJ 317 pp

  • Stull R.B. (1988). An Introduction to Boundary-layer Meteorology. Kluwer Acad. Publ., Dordrecht-Boston-London, 666 pp

    Google Scholar 

  • Troen I.B., Mahrt L. (1986). ‘A Simple Model of the Atmospheric Boundary Layer; Sensitivity to Surface Evaporation’. Boundary-Layer Meteorol. 37:129–148

    Article  Google Scholar 

  • Vogelezang D.H.P., Holtslag A.A.M. (1996). ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’. Boundary-Layer Meteorol. 81: 245–269

    Article  Google Scholar 

  • Wulfmeyer V., Bösenberg J. (1998). ‘Ground-Based Differential Absorption Lidar for Water-Vapor Profiling: Assessment of Accuracy, Resolution, and Meteorological Applications’. Appl. Optics 37(18):3825–3844

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Hennemuth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennemuth, B., Lammert, A. Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter. Boundary-Layer Meteorol 120, 181–200 (2006). https://doi.org/10.1007/s10546-005-9035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-9035-3

Keywords

Navigation