Abstract
Multi-robot missions can be compared to industrial processes or public services in terms of complexity, agents and interactions. Process mining is an emerging discipline that involves process modeling, analysis and improvement through the information collected by event logs. Currently, this discipline is successfully used to analyze several types of processes, but is hardly applied in the context of robotics. This work proposes a systematic protocol for the application of process mining to analyze and improve multi-robot missions. As an example, this protocol is applied to a scenario of fire surveillance and extinguishing with a fleet of UAVs. The results show the potential of process mining in the analysis of multi-robot missions and the detection of problems such as bottlenecks and inefficiencies. This work opens the way to an extensive use of these techniques in multi-robot missions, allowing the development of future systems for optimizing missions, allocating tasks to robots, detecting anomalies or supporting operator decisions.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Beer, J., Fisk, A. D., & Rogers, W. A. (2014). Toward a framework for levels of robot autonomy in human-robot interaction. Journal of Human-Robot Interaction, 3(2), 74.
Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., & Pappas, G. J. (2007). Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 61–70.
Bischoff, R., Huggenberger, U., and Prassler, E. (2011). Kuka youbot—A mobile manipulator for research and education. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 1–4). IEEE.
Buijs, J. C., Van Dongen, B. F., & van der Aalst, W. M. (2012). On the role of fitness, precision, generalization and simplicity in process discovery. In OTM confederated international conferences “on the move to meaningful internet systems” (pp. 305–322). Springer.
Cantelli, L., Mangiameli, M., Melita, C. D., & Muscato, G. (2013). UAV/UGV cooperation for surveying operations in humanitarian demining. In 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR) (pp 1–6). IEEE.
Cummings, M. L., & Mitchell, P. J. (2008). Predicting controller capacity in supervisory control of multiple UAVS. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(2), 451–460.
De Cubber, G., Doroftei, D., Serrano, D., Chintamani, K., Sabino, R., & Ourevitch, S. (2013). The EU-ICARUS project: Developing assistive robotic tools for search and rescue operations. In 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR) (pp. 1–4). IEEE.
Dentler, J., Kannan, S., Mendez, M. A. O., & Voos, H. (2016). A real-time model predictive position control with collision avoidance for commercial low-cost quadrotors. In 2016 IEEE conference on control applications (CCA) (pp. 519–525). IEEE.
Dijkman, R. M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process models in BPMN. Information and Software Technology, 50(12), 1281–1294.
Dudek, G., Jenkin, M. R., Milios, E., & Wilkes, D. (1996). A taxonomy for multi-agent robotics. Autonomous Robots, 3(4), 375–397.
Garzón, M., Valente, J., Roldán, J. J., Cancar, L., Barrientos, A., & Del Cerro, J. (2016). A multirobot system for distributed area coverage and signal searching in large outdoor scenarios. Journal of Field Robotics, 33(8), 1087–1106.
Garzón, M., Valente, J., Zapata, D., & Barrientos, A. (2013). An aerial-ground robotic system for navigation and obstacle mapping in large outdoor areas. Sensors, 13(1), 1247–1267.
Günther, C. W., & Rozinat, A. (2012). Disco: Discover your processes. BPM (Demos), 940, 40–44.
Janchiv, A., Batsaikhan, D., Hwan Kim, G., & Lee, S.-G. (2011). Complete coverage path planning for multi-robots based on. In 2011 11th international conference on control, automation and systems (ICCAS) (pp. 824–827). IEEE.
Jans, M., van der Werf, J. M., Lybaert, N., & Vanhoof, K. (2011). A business process mining application for internal transaction fraud mitigation. Expert Systems with Applications, 38(10), 13351–13359.
Kapoutsis, A. C., Chatzichristofis, S. A., Doitsidis, L., de Sousa, J. B., Pinto, J., Braga, J., et al. (2016). Real-time adaptive multi-robot exploration with application to underwater map construction. Autonomous Robots, 40(6), 987–1015.
Krajník, T., Vonásek, V., Fišer, D., & Faigl, J. (2011). AR-drone as a platform for robotic research and education. In International conference on research and education in robotics (pp. 172–186). Springer.
Kruijff-Korbayová, I., Colas, F., Gianni, M., Pirri, F., Greeff, J., Hindriks, K., et al. (2015). Tradr project: Long-term human-robot teaming for robot assisted disaster response. KI-Künstliche Intelligenz, 29(2), 193–201.
Leemans, S. J., Fahland, D., & van der Aalst, W. M. (2013). Discovering block-structured process models from event logs-a constructive approach. In International conference on applications and theory of Petri nets and concurrency (pp. 311–329). Springer.
Leemans, S. J., Fahland, D., & van der Aalst, W. M. (2014). Process and deviation exploration with inductive visual miner. BPM Demo Sessions, 1295, 46.
Lesire, C., Infantes, G., Gateau, T., & Barbier, M. (2016). A distributed architecture for supervision of autonomous multi-robot missions. Autonomous Robots, 40(7), 1343–1362.
Lindemuth, M., Murphy, R., Steimle, E., Armitage, W., Dreger, K., Elliot, T., et al. (2011). Sea robot-assisted inspection. IEEE Robotics & Automation Magazine, 18(2), 96–107.
Mans, R., Schonenberg, M., Song, M., van der Aalst, W. M., & Bakker, P. J. (2008). Application of process mining in healthcare—A case study in a dutch hospital. In International joint conference on biomedical engineering systems and technologies (pp. 425–438). Springer.
Nair, R., Tambe, M., Marsella, S., & Raines, T. (2004). Automated assistants for analyzing team behaviors. Autonomous Agents and Multi-Agent Systems, 8(1), 69–111.
Nestmeyer, T., Giordano, P. R., Bülthoff, H. H., & Franchi, A. (2017). Decentralized simultaneous multi-target exploration using a connected network of multiple robots. Autonomous Robots, 41(4), 989–1011.
Poggi, N., Muthusamy, V., Carrera, D., & Khalaf, R. (2013). Business process mining from e-commerce web logs. In Business process management (pp. 65–80). Berlin, Heidelberg: Springer.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., et al. (2009). Ros: An open-source robot operating system. In ICRA workshop on open source software (Vol. 3, p. 5). Kobe, Japan.
Rodríguez-Fernández, V., Gonzalez-Pardo, A., & Camacho, D. (2016). A method for building predictive HSMMS in interactive environments. In 2016 IEEE congress on evolutionary computation (CEC) (pp. 3146–3153). IEEE.
Roldán, J. J., del Cerro, J., & Barrientos, A. (2015). A proposal of methodology for multi-UAV mission modeling. In 2015 23th mediterranean conference on control and automation (MED) (pp. 1–7). IEEE.
Roldán, J. J., del Cerro, J., & Barrientos, A. (2017a). Using process mining to model multi-UAV missions through the experience. IEEE Intelligent Systems, 32(4), 40–47.
Roldán, J. J., Garcia-Aunon, P., del Cerro, J., & Barrientos, A. (2016a). Determining mission evolution through UAV telemetry by using decision trees. In 2016 IEEE international conference on systems, man and cybernetics (SMC) (pp. 108–103). IEEE.
Roldán, J. J., Garcia-Aunon, P., Garzón, M., de León, J., del Cerro, J., & Barrientos, A. (2016b). Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors, 16(7), 1018.
Roldán, J. J., Lansac, B., del Cerro, J., & Barrientos, A. (2016c). A proposal of multi-UAV mission coordination and control architecture. In Robot 2015: Second Iberian robotics conference (pp. 597–608). Springer.
Roldán, J. J., Peña-Tapia, E., Martín-Barrio, A., Olivares-Méndez, M. A., Del Cerro, J., & Barrientos, A. (2017b). Multi-robot interfaces and operator situational awareness: Study of the impact of immersion and prediction. Sensors, 17(8), 1720.
Rozinat, A., Zickler, S., Veloso, M., van der Aalst, W. M., & McMillen, C. (2009). Analyzing multi-agent activity logs using process mining techniques. Distributed Autonomous Robotic Systems, 8, 251–260.
Ruff, H. A., Narayanan, S., & Draper, M. H. (2002). Human interaction with levels of automation and decision-aid fidelity in the supervisory control of multiple simulated unmanned air vehicles. Presence: Teleoperators and Virtual Environments, 11(4), 335–351.
Sheridan, T. B., & Verplank, W. L. (1978). Human and computer control of undersea teleoperators. DTIC Document: Technical report.
Tsokas, N. A., & Kyriakopoulos, K. J. (2012). Multi-robot multiple hypothesis tracking for pedestrian tracking. Autonomous Robots, 32(1), 63–79.
Tully, S., Kantor, G., & Choset, H. (2010). Leap-frog path design for multi-robot cooperative localization. In Field and service robotics (pp. 307–317). Berlin, Heidelberg: Springer.
Valente, J., Sanz, D., Barrientos, A., del Cerro, J., Ribeiro, Á., & Rossi, C. (2011). An air-ground wireless sensor network for crop monitoring. Sensors, 11(6), 6088–6108.
Van der Aalst, W. M. (1998). The application of petri nets to workflow management. Journal of Circuits, Systems, and Computers, 8(01), 21–66.
Van der Aalst, W. (2011). Process mining: Discovery, conformance and enhancement of business processes. Berlin: Springer.
Van Der Aalst, W., Adriansyah, A., & Van Dongen, B. (2011). Causal nets: A modeling language tailored towards process discovery. In International conference on concurrency theory (pp. 28–42). Springer.
Van Dongen, B., Alves de Medeiros, A., & Wen, L. (2009). Process mining: Overview and outlook of petri net discovery algorithms. In transactions on petri nets and other models of concurrency II, 225–242.
van der Aalst, W. M., Reijers, H. A., Weijters, A. J., van Dongen, B. F., De Medeiros, A. A., Song, M., et al. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713–732.
van der Aalst, W. M., Rubin, V., van Dongen, B. F., Kindler, E., & Günther, C. W. (2006). Process mining: A two-step approach using transition systems and regions. BPM Center Report BPM-06-30, BPMcenter.org, 6.
Van der Aalst, W. M. & Song, M. (2004). Mining social networks: Uncovering interaction patterns in business processes. In International conference on business process management (pp. 244–260). Springer.
Van der Werf, J. M. E., van Dongen, B. F., Hurkens, C. A., and Serebrenik, A. (2008). Process discovery using integer linear programming. In International conference on applications and theory of petri nets (pp. 368–387). Springer.
Verbeek, H., Buijs, J., Van Dongen, B., & van der Aalst, W. M. (2010). Prom 6: The process mining toolkit. In Proceedings of BPM demonstration track (Vol. 615, pp. 34–39).
Van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128–1142.
Weijters, A. J., & Van der Aalst, W. M. (2003). Rediscovering workflow models from event-based data using little thumb. Integrated Computer-Aided Engineering, 10(2), 151–162.
Zhu, Q. (1991). Hidden markov model for dynamic obstacle avoidance of mobile robot navigation. IEEE Transactions on Robotics and Automation, 7(3), 390–397.
Acknowledgements
This work is framed on SAVIER (Situational Awareness Virtual EnviRonment) Project, which is both supported and funded by Airbus Defence & Space. The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU, and from the DPI2014-56985-R project (Protección robotizada de infraestructuras críticas) funded by the Ministerio de Economía y Competitividad of Gobierno de España. The experiments were performed in the facilities of Interdisciplinary Centre for Security, Reliability and Trust (SnT) of the University of Luxembourg (uni.lu).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Roldán, J.J., Olivares-Méndez, M.A., del Cerro, J. et al. Analyzing and improving multi-robot missions by using process mining. Auton Robot 42, 1187–1205 (2018). https://doi.org/10.1007/s10514-017-9686-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-017-9686-1