Abstract
We present a framework for distributed mobile sensor guidance to locate and track a target inside an urban environment. Our approach leverages the communications between robots when a link is available, but it also allows them to act independently. Each robot actively seeks the target using information maximization. The robots are assumed to be capable of communicating with their peers within some distance radius, and the sensor payload of each robot is a camera modeled to have target detection errors of types I and II. Our contributions include an optimal information fusion algorithm for discrete distributions which allows each agent to combine its local information with that of its neighbors, and a path planner that uses the fused estimate and a recent coverage result for information maximization to guide the agents. We include simulations and laboratory experiments involving multiple robots searching for a moving target within model cities of different sizes.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188. ISSN 1053-587X. 10.1109/78.978374.
Atanasov, N. A., Le Ny, J., & Pappas, G. J. (2015). Distributed algorithms for stochastic source seeking with mobile robot networks. Journal of Dynamic Systems, Measurement, and Control, 137(3), 031004.
Charrow, B., Liu, S., Kumar, V., & Michael, N. (2015a). Information-theoretic mapping using cauchy-schwarz quadratic mutual information. In IEEE International Conference on Robotics and Automation, pp. 4791–4798. doi:10.1109/ICRA.2015.7139865.
Charrow, B., Michael, N., & Kumar, V. (2015b). Active control strategies for discovering and localizing devices with range-only sensors. In Algorithmic Foundations of Robotics XI, pp. 55–71. Springer.
Choi, H.-L., & Lee, S.-J. (2015). A potential-game approach for information-maximizing cooperative planning of sensor networks. Control Systems Technology, IEEE Transactions on, 23(6), 2326–2335.
Chung, T. H., & Burdick, J. W. (2008). Multi-agent probabilistic search in a sequential decision-theoretic framework. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 146–151.
Dames, P., Tokekar, P., & Kumar, V. (2015). Detecting, localizing, and tracking an unknown number of moving targets using a team of mobile robots. Intl. Sym. Robot. Research.
Dames, P., Schwager, M., Rus, D., & Kumar, V. (2016). Active magnetic anomaly detection using multiple micro aerial vehicles. IEEE Robotics and Automation Letters, 1(1), 153–160.
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.
Fannes, M., & Spincemaille, P. (2003). The mutual affinity of random measures. Periodica Mathematica Hungarica, 47(1–2), 51–71.
Franken, D., & Hupper, A. (2005). Improved fast covariance intersection for distributed data fusion. In Information Fusion, 2005 8th International Conference on (vol. 1, p. 7) doi:10.1109/ICIF.2005.1591849.
Hatano, Y., & Mesbahi, M. (2005). Agreement over random networks. Automatic Control, IEEE Transactions, 50(11), 1867–1872.
Haugen, J., & Imsland, L. (2016). Monitoring moving objects using aerial mobile sensors. IEEE Transactions on Control Systems Technology, 24(2), 475–486. doi:10.1109/TCST.2015.2454432. ISSN 1063-6536.
Hausman, K., Müller, J., Hariharan, A., Ayanian, N., & Sukhatme, G. S. (2015). Cooperative multi-robot control for target tracking with onboard sensing. The International Journal of Robotics Research, 34(13), 1660–1677.
Hoffmann, G. M., & Tomlin, C. J. (2010). Mobile sensor network control using mutual information methods and particle filters. IEEE Transactions on Automatic Control, 55(1), 32–47.
Julian, B. J., Angermann, M., Schwager, M., & Rus, D. (2012). Distributed robotic sensor networks: An information-theoretic approach. The International Journal of Robotics Research, 31(10), 1134–1154.
Julier, S. J., & Uhlmann, J. K. (1997). A non-divergent estimation algorithm in the presence of unknown correlations. In In Proceedings of the American Control Conference. Citeseer, 1997.
Kantaros, Y., & Zavlanos, M. M. (2016). Distributed communication-aware coverage control by mobile sensor networks. Automatica, 63, 209–220.
Li, T., Bolic, M., & Djuric, P. (2015). Resampling methods for particle filtering: Classification, implementation, and strategies. Signal Processing Magazine, IEEE, 32(3), 70–86. doi:10.1109/MSP.2014.2330626. ISSN 1053-5888.
Liu, Y., & Nejat, G. (2013). Robotic urban search and rescue: A survey from the control perspective. Journal of Intelligent & Robotic Systems, 72(2), 147–165.
Liu, Y., & Nejat, G. (2015). Multirobot cooperative learning for semiautonomous control in urban search and rescue applications. Journal of Field Robotics, 2015.
Makarenko, A., & Durrant-Whyte, H. (2006). Decentralized bayesian algorithms for active sensor networks. Information Fusion, 7(4), 418–433.
Moreau, L. (2005). Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control, 50(2), 169–182. doi:10.1109/TAC.2004.841888. ISSN 0018-9286.
Olfati-Saber, R., & Murray, R. M. (2003). Consensus protocols for networks of dynamic agents. In Proceedings of the 2003 American Controls Conference, (2, pp. 951–956, June 2003). doi:10.1109/ACC.2003.1239709.
Ong, L. L., Bailey, T., Durrant-Whyte, H., & Upcroft, B. (2008). Decentralised particle filtering for multiple target tracking in wireless sensor networks. In Information Fusion, 2008 11th International Conference on, pp. 1–8, June 2008.
Pennisi, A., Previtali, F., Gennari, C., Bloisi, D. D., Iocchi, L., Ficarola, F., Vitaletti, A., & Nardi, D. (2015). Multi-robot surveillance through a distributed sensor network. In Cooperative Robots and Sensor Networks 2015, pp. 77–98. Springer, 2015.
Pimenta, L. C. A., Schwager, M., Lindsey, Q., Kumar, V., Rus, D., Mesquita, R. C., & Pereira, G. A. S. (2009). Simultaneous coverage and tracking (SCAT) of moving targets with robot networks. In Algorithmic foundation of robotics VIII, pp. 85–99. Springer, 2009.
Ramirez-Paredes, J. P., Doucette, E. A., Curtis, J. W., & Gans, N. R. (2015). Urban target search and tracking using a UAV and unattended ground sensors. American Control Conference (ACC), 2015, 2401–2407. doi:10.1109/ACC.2015.7171092.
Ramirez-Paredes, J. P., Doucette, E. A., Curtis, J. W., & Gans, N. R. (2016). Optimal placement for a limited-support binary sensor. IEEE Robotics and Automation Letters, 1(1), 439–446. doi:10.1109/LRA.2016.2521406. ISSN 2377-3766.
Ryan, A., & Hendrick, J. K. (2010). Particle filter based information-theoretic active sensing. Robotics and Autonomous Systems, 58(5), 574–584.
Tomić, T., Schmid, K., Lutz, P., Dömel, A., Kassecker, M., Mair, E., et al. (2012). Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. Robotics & Automation Magazine, IEEE, 19(3), 46–56.
Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the optimal searcher path problem. Operations Research, 34(2), 324–327.
Van Scoy, B., Freeman, R. A., & Lynch, K. M. (2015). A fast robust nonlinear dynamic average consensus estimator in discrete time. IFAC-Papers On Line, 48(22), 191–196.
Wilcoxon, F., Katti, S. K., & Wilcox, R. A. (1970). Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected Tables in Mathematical Statistics, 1, 171–259.
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published in Autonomous Robots comprising the Special Issue on Active Perception.
This work was supported by the US Air Force Research Laboratory Award Number FA8651-13-1-0003 and the Mexican government through Conacyt fellowship 253761/310475.
Rights and permissions
About this article
Cite this article
Ramirez-Paredes, JP., Doucette, E.A., Curtis, J.W. et al. Distributed information-based guidance of multiple mobile sensors for urban target search. Auton Robot 42, 375–389 (2018). https://doi.org/10.1007/s10514-017-9658-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-017-9658-5