Decentralized trajectory optimization using virtual motion camouflage and particle swarm optimization | Autonomous Robots
Skip to main content

Decentralized trajectory optimization using virtual motion camouflage and particle swarm optimization

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper investigates a decentralized trajectory optimization method to solve a nonlinear constrained trajectory optimization problem. Especially, we consider a problem constrained on the terminal time and angle in a multi-robot application. The proposed algorithm is based on virtual motion camouflage (VMC) and particle swarm optimization (PSO). VMC changes a typical full space optimal problem to a subspace optimal problem, so it can reduce the dimension of the original problem by using path control parameters (PCPs). If PCPs are optimized, then the optimal path can be obtained. In this work, PSO is used to optimize these PCPs. In multi-robot path planning, each robot generates its own optimal path by using VMC and PSO, and sends its path information to the other robots. Then, the other robots use this path information when planning their own paths. Simulation and experimental results show that the optimal paths considering the terminal time and angle constraints are effectively generated by decentralized VMC and PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anisi, D., Robinson, J., Gren, P. (2006) On-line trajectory planning for aerial vehicles: a safe approach with guaranteed task completion. In AIAA Guidance, Navigation and Control Conference and Exhibit.

  • Bernard, M., Kondak, K., Maza, I., & Ollero, A. (2011). Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics, 28(6), 914–931.

    Article  Google Scholar 

  • Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, Dynamics, 21(2), 193–207.

  • Bhattacharya, S., Kumar, V., & Likachev, M. (2010). Distributed optimization with pairwise constraints and its application to multi-robot path planning. In Proceedings of Robotics: Science and Systems.

  • Bollino, K., & Lewis, L. R. (2008). Collision-free multi-uav optimal path planning and cooperative control for tactical applications. In AIAA Guidance, Navigation and Control Conference and Exhibit.

  • Borrelli, F., Keviczky, T., & Balas, G. (2004). Collision-free uav formation flight using decentralized optimization and invariant sets. In CDC. 43rd IEEE Conference on Decision and Control, 2004, (vol. 1, pp. 1099–1104).

  • Clerc, M., & Kennedy, J. (2002). The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Trans on Evolutionary Computation, 6(1), 58–73.

    Article  Google Scholar 

  • Darby, C. L., Hager, W. W., & Rao, A. V. (2011). Direct trajectory optimization using a variable low-order adaptive pseudospectral method. Journal of Spacecraft and Rockets, 48(3), 433–445.

    Article  Google Scholar 

  • Desaraju, V. R., & How, J. P. (2012). Decentralized path planning for multi-agent teams with complex constraints. Autonomous Robots, 32(4), 385–403.

    Article  Google Scholar 

  • Fahroo, F., & Ross, I. M. (2001). Costate estimation by a legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 24(2), 270–277.

  • Harl, N., & Balakrishnan, S. (2012). Impact time and angle guidance with sliding mode control. IEEE Transactions on Control Systems Technology, 20(6), 1436–1449.

    Article  Google Scholar 

  • Inalhan, G., Stipanovic, D., & Tomlin, C. (2002). Decentralized optimization, with application to multiple aircraft coordination. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002, (vol. 1, pp. 1147–1155).

  • Jeon, I. S., Lee, J. I., & Tahk, M. J. (2006). Impact-time-control guidance law for anti-ship missiles. IEEE Transactions on Control Systems Technology, 14(2), 260–266.

    Article  Google Scholar 

  • Jorris, T. R., & Cobb, R. G. (2009). Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints. Journal of Guidance, Control, and Dynamics, 32(2), 551–572.

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings the 1995 IEEE International Conference on Neural Networks, (pp. 1942–1948).

  • Keviczky, T., Borrelli, F., & Balas, G. J. (2004). A study on decentralized receding horizon control for decoupled systems. In IEEE Proceedings of the 2004 American Control Conference, (vol. 6, pp. 4921–4926).

  • Kim, M., & Grider, K. V. (1973). Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Transactions on Aerospace and Electronic Systems AES, 9(6), 852–859.

    Article  Google Scholar 

  • Koh, B. I., George, A. D., Haftka, R. T., & Fregly, B. J. (2006). Parallel asynchronous particle swarm optimization. International Journal for Numerical Methods in Engineering, 67(4), 578–595.

    Article  MATH  Google Scholar 

  • Kuwata, Y., & How, J. (2011). Cooperative distributed robust trajectory optimization using receding horizon milp. IEEE Transactions on Control Systems Technologies, 19(2), 423–431.

    Article  Google Scholar 

  • Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli, E., & How, J. P. (2009). Real-time motion planning with applications to autonomous urban driving. IEEE Transactions on Control Systems Technology, 17(5), 1105–1118.

    Article  Google Scholar 

  • Kwak, D., Choi, B., & Kim, H. (2013). Trajectory optimization using virtual motion camouflage and particle swarm optimization. In J. Lee, M. Lee, H. Liu, & J. H. Ryu (Eds.), Intelligent Robotics and Applications, Lecture Notes in Computer Science, (Vol. 8102, pp. 594–604). Berlin, Heidelberg: Springer.

  • Lee, J. I., Jeon, I. S., & Tahk, M. J. (2007). Guidance law to control impact time and angle. IEEE Transactions on Aerospace Electronic Systems, 43(1), 301–310.

    Article  Google Scholar 

  • Luca, A., Oriolo, G., & Vendittelli, M. (2001). Control of wheeled mobile robots: An experimental overview. In Ramsete Lecture Notes in Control and Information Sciences, (vol. 270, pp. 181–226). Berlin, Heidelberg: Springer.

  • Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J., Floreano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, (pp. 59–65).

  • Olson, E., Strom, J., Morton, R., Richardson, A., Ranganathan, P., Goeddel, R., et al. (2012). Progress toward multi-robot reconnaissance and the magic 2010 competition. Journal of Field Robotics, 29(5), 762–792.

    Article  Google Scholar 

  • Parker, L. E. (2002). Distributed algorithms for multi-robot observation of multiple moving targets. Autonomous Robots, 12(3), 231–255.

    Article  MATH  Google Scholar 

  • Richards, A., & How, J. (2004). A decentralized algorithm for robust constrained model predictive control. In Proceedings of the American Control Conference, 2004. (vol. 5, pp. 4261–4266). IEEE, New York.

  • Ryoo, C. K., Cho, H., & Tahk, M. J. (2006). Time-to-go weighted optimal guidance with impact angle constraints. IEEE Transactions on Control Systems Technology, 14(3), 483–492.

    Article  Google Scholar 

  • Schouwenaars, T., How, J., & Feron, E. (2004). Decentralized cooperative trajectory planning of multiple aircraft with hard safety guarantees. In AIAA Guidance, Navigation and Control Conference and Exhibit.

  • Schutte, J. F., Reinbolt, J. A., Fregly, B. J., Haftka, R. T., & George, A. D. (2004). Parallel global optimization with the particle swarm algorithm. International Journal of Numerical Methods in Engineering, 61(13), 2296–2315.

    Article  MATH  Google Scholar 

  • Song, T. L., & Shin, S. (1999). Time-optimal impact angle control for vertical plane engagements. IEEE Transactions on Aerospace Electronic Systems, 35(2), 738–742.

    Article  Google Scholar 

  • Srinivasan, M. V., & Davey, M. (1995). Strategies for active camouflage of motion. Proceedings of the Royal Society of London. Series B: Biological Sciences, 259(1354), 19–25.

    Article  Google Scholar 

  • Stryk, O., & Bulirsch, R. (1992). Direct and indirect methods for trajectory optimization. Annals of Operations Research, 37(1), 357–373.

  • Xu, Y. (2007). Virtual motion camouflage and suboptimal trajectory design. In AIAA Guidance, Navigation and Control Conference and Exhibit.

  • Xu, Y. (2008). Subspace optimal control and motion camouflage. In AIAA Guidance, Navigation and Control Conference and Exhibit.

  • Xu, Y., & Basset, G. (2009). Pre and post optimality checking of the virtual motion camouflage based nonlinear constrained subspace optimal control. In AIAA Guidance, Navigation, and Control Conference.

  • Xu, Y., & Basset, G. (2012). Sequential virtual motion camouflage method for nonlinear constrained optimal trajectory control. Automatica, 48(7), 1273–1285.

Download references

Acknowledgments

This research was financially supported by a grant to Unmanned Technology Research Center funded by Defense Acquisition Program Administration, and by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (no. 2009-0083495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jin Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 6458 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, D.J., Choi, B., Cho, D. et al. Decentralized trajectory optimization using virtual motion camouflage and particle swarm optimization. Auton Robot 38, 161–177 (2015). https://doi.org/10.1007/s10514-014-9399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-014-9399-7

Keywords