Abstract
Neighborhood rough set is an important model in feature selection. However, it only determines the granularity of the neighborhood from a feature perspective, while ignoring the influence of sample distribution on the granularity of the neighborhood. Moreover, the use of single and monotonic uncertainty measures limits its ability to obtain high-quality features in complex and large-scale data, as well as perform feature selection for high-dimensional data. To address these issues, we propose several improvements. Firstly, we construct a sample space state function to evaluate the influence of sample distribution on the granularity of the samples. Based on the state of the sample space, we then propose four perspectives of variable-granularity neighborhoods and define the upper and lower approximations for these neighborhoods. Additionally, we define the dependence of variable-granularity neighborhoods and the positive regions from an algebraic perspective. These definitions together form a comprehensive variable-granularity rough set model that can automatically adjust the granularity size according to the sample distribution and select high-quality features. Secondly, in order to comprehensively assess the uncertainty of data, we introduce the information and algebraic perspectives. We propose a multi-perspective mixed entropy measure in the variable-granularity rough set framework. Thirdly, to avoid the problem of selecting redundant features caused by using a monotonic evaluation function in classical neighborhood rough set feature selection algorithms, we propose a non-monotonic feature selection algorithm based on the individual perspective of samples and the mixed entropy measures of the variable-granularity rough set. Finally, to overcome the high time complexity of feature selection on high-dimensional data, we introduce Fish-Score as a preliminary dimensionality reduction technique. Experimental results on eleven datasets and using fifteen algorithms demonstrate that our method not only improves classification accuracy but also effectively reduces the number of features.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of Data and Material
The UCI datasets used in the experiment are down-loaded from http://archive.ics.uci.edu/ml/index.php, the DNA microarray datasets used in the experiment are down-loaded from http://csse.szu.edu.cn/staff/zhuzx/.
References
Zheng W, Chen S, Fu Z, Zhu F, Yan H, Yang J (2022) Feature selection boosted by unselected features. IEEE Transactions on Neural Networks and Learning Systems 33(9):4562–4574. https://doi.org/10.1109/TNNLS.2021.3058172
Wang P, Xue B, Liang J, Zhang M (2023) Feature clustering-Assisted feature selection with differential evolution. Pattern Recogn 140:109523. https://doi.org/10.1016/j.patcog.2023.109523
Yang Y, Chen D, Zhang X, Ji Z, Zhang Y (2022) Incremental feature selection by sample selection and feature-based accelerator. Appl Soft Comput 121:108800. https://doi.org/10.1016/j.asoc.2022.108800
Xu W, Huang M, Jiang Z, Qian Y (2023) Graph-based unsupervised feature selection for interval-valued information system. IEEE Trans Neural Netw Learn Syst 114. https://doi.org/10.1109/TNNLS.2023.3263684
You D, Sun M, Liang S, Li R, Wang Y, Xiao J, Yuan F, Shen L, Wu X (2022) Online feature selection for multi-source streaming features. Inf Sci 590:267–295. https://doi.org/10.1016/j.ins.2022.01.008
Zhou P, Wang N, Zhao S (2021) Online group streaming feature selection considering feature interaction. Knowl-Based Syst 226:107157. https://doi.org/10.1016/j.knosys.2021.107157
Singh D, Singh B (2019) Hybridization of feature selection and feature weighting for high dimensional data. Appl Intell 49(4):1580–1596. https://doi.org/10.1007/s10489-018-1348-2
Wang F, Liang J, Song P (2023) Coupling learning for feature selection in categorical data. Int J Mach Learn & Cyber 14:2455–2465. https://doi.org/10.1007/s13042-023-01775-z
Peng L, Cai Z, Heidari AA, Zhang L, Chen H (2023) Hierarchical Harris hawks optimizer for feature selection. J Adv Res. https://doi.org/10.1016/j.jare.2023.01.014
Wichitaksorn N, Kang Y, Zhang F (2023) Random feature selection using random subspace logistic regression. Expert Syst Appl 217:119535. https://doi.org/10.1016/j.eswa.2023.119535
Xue Y, Zhu H, Neri F (2023) A feature selection approach based on NSGA-II with ReliefF. Appl Soft Comput 134:109987. https://doi.org/10.1016/j.asoc.2023.109987
Dong L, Wang R, Chen D (2023) Incremental feature selection with fuzzy rough sets for dynamic data sets. Fuzzy Sets Syst 457:108503. https://doi.org/10.1016/j.fss.2023.03.006
Yang X, Zhang Y, Fujita H, Liu D, Li T (2020) Local temporal-spatial multi-granularity learning for sequential three-way granular computing. Inf Sci 541:75–97. https://doi.org/10.1016/j.ins.2020.06.020
Ju H, Ding W, Yang X, Fujita H, Xu S (2021) Robust supervised rough granular description model with the principle of justifiable granularity. Appl Soft Comput 110:107612. https://doi.org/10.1016/j.asoc.2021.107612
Hu Q, Pan W, Zhang L, Zhang D, Song Y, Guo M, Yu D (2012) Feature selection for monotonic classification. IEEE Trans Fuzzy Syst 20(1):69–81. https://doi.org/10.1109/TFUZZ.2011.2167235
Fujita H, Gaeta A, Loia V, Orciuoli F (2020) Hypotheses analysis and assessment in counterterrorism activities: A method based on owa and fuzzy probabilistic rough sets. IEEE Trans Fuzzy Syst 28(5):831–845. https://doi.org/10.1109/TFUZZ.2019.2955047
Pawlak Z, Skowron A (2007) Rough sets: Some extensions. Inf Sci 177(1):28–40. https://doi.org/10.1016/j.ins.2006.06.006
Qian Y, Liang J, Yao Y, Dang C (2010) MGRS: A multi-granulation rough set. Inf Sci 180(6):949–970. https://doi.org/10.1016/j.ins.2009.11.023
She Y, He X (2012) On the structure of the multigranulation rough set model. Knowl-Based Syst 36:81–92. https://doi.org/10.1016/j.knosys.2012.05.019
Peters J, Chan C-C, Grzymala-Busse JW, Ziarko W (2011) Preface: A rough set approach to data mining. Int J Intell Syst 26(6):497–498. https://doi.org/10.1002/int.20480
Hu Q, Yu D, Liu J, Wu C (2008) Neighborhood rough set based heterogeneous feature subset selection. Inf Sci 178(18):3577–3594. https://doi.org/10.1016/j.ins.2008.05.024
Yong L, Wenliang H, Yunliang J, Zhiyong Z (2014) Quick attribute reduct algorithm for neighborhood rough set model. Inf Sci 271:65–81. https://doi.org/10.1016/j.ins.2014.02.093
Ping Y, Yongheng L (2011) Neighborhood rough set and SVM based hybrid credit scoring classifier. Expert Syst Appl 38(9):11300–11304. https://doi.org/10.1016/j.eswa.2011.02.179
Chen Y, Zeng Z, Zhu Q, Tang C (2016) Three-way decision reduction in neighborhood systems. Appl Soft Comput 38:942–954. https://doi.org/10.1016/j.asoc.2015.10.059
Pan Y, Xu W, Ran Q (2023) An incremental approach to feature selection using the weighted dominance-based neighborhood rough sets. Int J Mach Learn & Cyber 14(4):1217–1233. https://doi.org/10.1007/s13042-022-01695-4
Li Y, Cai M, Zhou J, Li Q (2022) Accelerated multi-granularity reduction based on neighborhood rough sets. Appl Intell 52(15):17636–17651. https://doi.org/10.1007/s10489-022-03371-0
Luo S, Miao D, Zhang Z, Zhang Y, Hu S (2020) A neighborhood rough set model with nominal metric embedding. Inf Sci 520:373–388. https://doi.org/10.1016/j.ins.2020.02.015
Hu M, Tsang ECC, Guo Y, Chen D, Xu W (2021) A novel approach to attribute reduction based on weighted neighborhood rough sets. Knowl-Based Syst 220:106908. https://doi.org/10.1016/j.knosys.2021.106908
Xu J, Qu K, Sun Y, Yang J (2023) Feature selection using self-information uncertainty measures in neighborhood information systems. Appl Intell 53(4):4524–4540. https://doi.org/10.1007/s10489-022-03760-5
Xu J, Meng X, Qu K, Sun Y, Hou Q (2023) Feature selection using relative dependency complement mutual information in fitting fuzzy rough set model. Appl Intell 53:18239–18262. https://doi.org/10.1007/s10489-022-04445-9
Qu K, Xu J, Han Z, Xu S (2023) Maximum relevance minimum redundancy-based feature selection using rough mutual information in adaptive neighborhood rough sets. Appl Intell 53:17727–17746. https://doi.org/10.1007/s10489-022-04398-z
Sun L, Yin T, Ding W, Qian Y, Xu J (2022) Feature selection with missing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy. IEEE Trans Fuzzy Syst 30(5):1197–1211. https://doi.org/10.1109/TFUZZ.2021.3053844
Chen Y, Xue Y, Ma Y, Xu F (2017) Measures of uncertainty for neighborhood rough sets. Knowl-Based Syst 120:226–235. https://doi.org/10.1016/j.knosys.2017.01.008
Xie N, Liu M, Li Z, Zhang G (2019) New measures of uncertainty for an interval-valued information system. Inf Sci 470:156–174. https://doi.org/10.1016/j.ins.2018.08.047
Song Y, Zhang G, He J, Liao S, Xie N (2022) Uncertainty measurement for heterogeneous data: an application in attribute reduction. Artif Intell Rev 55(2):991–1027. https://doi.org/10.1007/s10462-021-09978-y
Xu J, Sun Y, Qu K, Meng X, Hou Q (2022) Online group streaming feature selection using entropy-based uncertainty measures for fuzzy neighborhood rough sets. Complex Intell Syst 8(6):5309–5328. https://doi.org/10.1007/s40747-022-00763-0
Sun L, Wang L, Ding W, Qian Y, Xu J (2021) Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets. IEEE Trans Fuzzy Syst 29(1):19–33. https://doi.org/10.1109/TFUZZ.2020.2989098
Xu J, Yuan M, Ma Y (2022) Feature selection using self-information and entropy-based uncertainty measure for fuzzy neighborhood rough set. Complex Intell Syst 8(1):287–305. https://doi.org/10.1007/s40747-021-00356-3
Yang X, Chen H, Li T, Wan J, Sang B (2021) Neighborhood rough sets with distance metric learning for feature selection. Knowl-Based Syst 224:107076. https://doi.org/10.1016/j.knosys.2021.107076
An S, Guo X, Wang C, Guo G, Dai J (2023) A soft neighborhood rough set model and its applications. Inf Sci 624:185–199. https://doi.org/10.1016/j.ins.2022.12.074
Hu Q, Zhang L, Zhang D, Pan W, An S, Pedrycz W (2011) Measuring relevance between discrete and continuous features based on neighborhood mutual information. Expert Syst Appl 38(9):10737–10750. https://doi.org/10.1016/j.eswa.2011.01.023
Chen Y, Wu K, Chen X, Tang C, Zhu Q (2014) An entropy-based uncertainty measurement approach in neighborhood systems. Inf Sci 279:239–250. https://doi.org/10.1016/j.ins.2014.03.117
Sun L, Zhang X-Y, Qian Y-H, Xu J-C, Zhang S-G, Tian Y (2019) Joint neighborhood entropy-based gene selection method with fisher score for tumor classification. Appl Intell 49(4):1245–1259. https://doi.org/10.1007/s10489-018-1320-1
Zhang X, Fan Y, Yang J (2021) Feature selection based on fuzzy-neighborhood relative decision entropy. Pattern Recogn Lett 146:100–107. https://doi.org/10.1016/j.patrec.2021.03.001
Qu K, Xu J, Hou Q, Qu K, Sun Y (2023) Feature selection using Information Gain and decision information in neighborhood decision system. Appl Soft Comput 136:110100. https://doi.org/10.1016/j.asoc.2023.110100
Wang C, Shao M, He Q, Qian Y, Qi Y (2016) Feature subset selection based on fuzzy neighborhood rough sets. Knowl-Based Syst 111:173–179. https://doi.org/10.1016/j.knosys.2016.08.009
Li S, Zhang K, Li Y, Wang S, Zhang S (2021) Online streaming feature selection based on neighborhood rough set. Appl Soft Comput 113:108025. https://doi.org/10.1016/j.asoc.2021.108025
Gan M, Zhang L (2021) Iteratively local fisher score for feature selection. Appl Intell 51(8):6167–6181. https://doi.org/10.1007/s10489-020-02141-0
Aran O, Akarun L (2010) A multi-class classification strategy for Fisher scores: Application to signer independent sign language recognition. Pattern Recogn 43(5):1776–1788. https://doi.org/10.1016/j.patcog.2009.12.002
Chen H, Li T, Fan X, Luo C (2019) Feature selection for imbalanced data based on neighborhood rough sets. Inf Sci 483:1–20. https://doi.org/10.1016/j.ins.2019.01.041
Liu J, Lin Y, Ding W, Zhang H, Wang C, Du J (2023) Multi-label feature selection based on label distribution and neighborhood rough set. Neurocomputing 524:142–157. https://doi.org/10.1016/j.neucom.2022.11.096
Liu J, Lin Y, Li Y, Weng W, Wu S (2018) Online multi-label streaming feature selection based on neighborhood rough set. Pattern Recogn 84:273–287. https://doi.org/10.1016/j.patcog.2018.07.021
Shu W, Qian W, Xie Y (2020) Incremental feature selection for dynamic hybrid data using neighborhood rough set. Knowl-Based Syst 194:105516. https://doi.org/10.1016/j.knosys.2020.105516
Zou L, Ren S, Li H, Yang X (2021) An optimization of master S-N curve fitting method based on improved neighborhood rough set. IEEE Access 9:8404–8420. https://doi.org/10.1109/ACCESS.2021.3049403
Zou L, Ren S, Sun Y, Yang X (2023) Attribute reduction algorithm of neighborhood rough set based on supervised granulation and its application. Soft Comput 27(3):1565–1582. https://doi.org/10.1007/s00500-022-07454-5
Jensen R, Shen Q (2009) New approaches to fuzzy-rough feature selection. IEEE Trans Fuzzy Syst 17(4):824–838. https://doi.org/10.1109/TFUZZ.2008.924209
Tan A, Wu W-Z, Qian Y, Liang J, Chen J, Li J (2019) Intuitionistic fuzzy rough set-based granular structures and attribute subset selection. IEEE Trans Fuzzy Syst 27(3):527–539. https://doi.org/10.1109/TFUZZ.2018.2862870
Wang C, Huang Y, Shao M, Hu Q, Chen D (2020) Feature selection based on neighborhood self-information. IEEE Transactions on Cybernetics 50(9):4031–4042. https://doi.org/10.1109/TCYB.2019.2923430
Qian Y, Wang Q, Cheng H, Liang J, Dang C (2015) Fuzzy-rough feature selection accelerator. Fuzzy Sets Syst 258:61–78. https://doi.org/10.1016/j.fss.2014.04.029
Chen D, Zhang L, Zhao S, Hu Q, Zhu P (2012) A novel algorithm for finding reducts with fuzzy rough sets. IEEE Trans Fuzzy Syst 20(2):385–389. https://doi.org/10.1109/TFUZZ.2011.2173695
Sun L, Wang L, Ding W, Qian Y, Xu J (2020) Neighborhood multi-granulation rough sets-based attribute reduction using Lebesgue and entropy measures in incomplete neighborhood decision systems. Knowl-Based Syst 192:105373. https://doi.org/10.1016/j.knosys.2019.105373
Xu J, Qu K, Meng X, Sun Y, Hou Q (2022) Feature selection based on multiview entropy measures in multiperspective rough set. Int J Intell Syst 37(10):7200–7234. https://doi.org/10.1002/int.22878
Zeng K, She K, Niu X (2013) Multi-Granulation Entropy and Its Applications. Entropy 15(6):2288–2302. https://doi.org/10.3390/e15062288
Yu D, Hu Q, Wu C (2007) Uncertainty measures for fuzzy relations and their applications. Appl Soft Comput 7(3):1135–1143. https://doi.org/10.1016/j.asoc.2006.10.004
Hu Q, Zhang L, Zhang D, Pan W, An S, Pedrycz W (2011) Measuring relevance between discrete and continuous features based on neighborhood mutual information. Expert Syst Appl 38(9):10737–10750. https://doi.org/10.1016/j.eswa.2011.01.023
Sun L, Zhang X, Qian Y, Xu J, Zhang S (2019) Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification. Inf Sci 502:18–41. https://doi.org/10.1016/j.ins.2019.05.072
Chen Y, Zhang Z, Zheng J, Ma Y, Xue Y (2017) Gene selection for tumor classification using neighborhood rough sets and entropy measures. J Biomed Inform 67:59–68. https://doi.org/10.1016/j.jbi.2017.02.007
Xu FF, Miao DQ, Wei L (2009) Fuzzy-rough attribute reduction via mutual information with an application to cancer classification. Computers & Mathematics with Applications 57(6):1010–1017. https://doi.org/10.1016/j.camwa.2008.10.027
Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Inst Stat Math 11(1):86–92
Dunn QJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52–64
Acknowledgements
The paper is supported in part by the National Natural Science Foundation of China under Grant (61976082, 62076089, 62002103).
Author information
Authors and Affiliations
Contributions
Conceptualization: Jiucheng Xu,Changshun Zhou; Methodology: Changshun Zhou; Writing - original draft preparation: Changshun Zhou, Shihui Xu, Lei Zhang; Writing - review and editing: Changshun Zhou, Ziqin Han; Funding acquisition: Jiucheng Xu.
Corresponding author
Ethics declarations
Competing interest
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A
Appendix A
Proof of property 1
when \({G_1} \subseteq {G_2}\), there is \(N_{KB}^{{G_1}}\left( L \right) \supseteq N_{KB}^{{G_2}} \left( L \right) \), from (28) and (30), we know \(\underline{N_{KB}^{{G_1}}} {E_z} \subseteq \underline{N_{KB}^{{G_2}}} {E_z}\) and \(\underline{N_{KB}^{{G_1}}} (E) \subseteq \underline{N_{KB}^{{G_2}}}( E)\), so \(\mid {\underline{N_{KB}^{{G_1}}} (E)} \mid \le \mid {\underline{N_{KB}^{{G_2}}}( E)} \mid \). From (31) and (32), \(\gamma _{KB}^{{G_1}}(E) \le \gamma _{KB}^{{G_2}}(E)\) holds.
Proof of property 2
Proof For \(\forall \ \ {L_i} \in U\),there is \(1 \le \mid {N_{KB}^B\left( {{L_i}} \right) } \mid \le \mid U \mid \), then \(\frac{1}{{\mid U \mid }} \le \frac{{\mid {N_{KB}^B\left( {{L_i}} \right) } \mid }}{{\mid U \mid }} \le 1\), \(\log \frac{1}{{\mid U \mid }} \le \log \frac{{\mid {N_{KB}^B\left( {{L_i}} \right) } \mid }}{{\mid U \mid }} \le 0\) and \(\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{1}{{\mid U \mid }} \le \mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^B\left( {{L_i}} \right) } \mid }}{{\mid U \mid }} \le 0\), so \( \log \mid U \mid =- \log \frac{1}{{\mid U \mid }} \ge - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^B\left( {{L_i}} \right) } \mid }}{{\mid U \mid }} \ge 0\), because \(0 \le \gamma _{KB}^B(E) \le 1\), so \(\log \mid U \mid \ge \gamma _{KB}^B(E)\log \mid U \mid = - \gamma _{KB}^B(E)\log \frac{1}{{\mid U \mid }} \ge - \frac{{\gamma _{KB}^B(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^B\left( {{L_i}} \right) } \mid }}{{\mid U \mid }} \ge 0\). From (33), \(0 \le M{Q_{KB}}(B) \le \log \mid U \mid \) holds.
Proof of property 3
\(M{Q_{KB}}(b_2) = - \frac{{\gamma _{KB}^(b_2)(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^(b_2)\left( {{L_i}} \right) } \mid }}{{\mid U \mid }}\) and
\(M{Q_{KB}}({b_1}\mid {{b_2}} ) = - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}\) then
\(M{Q_{KB}}({b_1}\mid {{b_2}} ) + M{Q_{KB}}({b_2})\)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}}} - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}\) \(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \left( {\frac{{{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}}}} \right) \times \left( {\frac{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}} \right) \) \(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}\) \(= M{Q_{KB}}({b_1},{b_2})\), \(M{Q_{KB}}({b_1},{b_2}) = M{Q_{KB}}({b_1}\mid {{b_2}} ) + M{Q_{KB}}({b_2})\) holds.
Proof of property 4
Proof From (36), we know
\(M{Q_{KB}}({b_1};{b_2})\)
\(= - \frac{{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid \mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid \mid U \mid }}\)
\(= - \frac{{\gamma _{KB}^{{b_2}}(E) + \gamma _{KB}^{{b_1}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid \mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) \cap N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid \mid U \mid }}\)
\(= M{Q_{KB}}({b_2};{b_1})\), \(M{Q_{KB}}({b_1};{b_2}) = M{Q_{KB}}({b_2};{b_1})\) holds.
Proof of property 5
Proof From (33)–(34) and (36), we know
\(M{Q_{KB}}({b_1}) = - \frac{{\gamma _{KB}^{{b_1}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }}{{\mid U \mid }}\),
\(M{Q_{KB}}({b_2}) = - \frac{{\gamma _{KB}^{{b_2}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }}{{\mid U \mid }}\),
\(M{Q_{KB}}({b_1},{b_2}) = - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}\) and
\(M{Q_{KB}}({b_1};{b_2}) = - \frac{{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid \mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid \mid U \mid }}\), then
\(M{Q_{KB}}({b_1}) + M{Q_{KB}}({b_2})\)
\(= - \frac{{\gamma _{KB}^{{b_1}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }}{{\mid U \mid }} - \frac{{\gamma _{KB}^{{b_2}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }}{{\mid U \mid }}\)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_1}}(E)}}}} - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}}}\)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \left( {\log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_1}}(E)}}}} + \log \frac{{{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}}}} \right) \)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \left( {\frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_1}}(E)}}}} \times \frac{{{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}}}} \right) \)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{^{\gamma _{KB}^{{b_1}}(E)}{ + ^{\gamma _{KB}^{{b_2}}(E)}}}}}}\),
\(M{Q_{KB}}({b_1}) + M{Q_{KB}}({b_2}) - M{Q_{KB}}({b_1},{b_2})\)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \left( {\log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{^{\gamma _{KB}^{{b_1}}(E)}{ + ^{\gamma _{KB}^{{b_2}}(E)}}}}}} - \log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}} \right) \)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \left( {\frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{^{\gamma _{KB}^{{b_1}}(E)}{ + ^{\gamma _{KB}^{{b_2}}(E)}}}}}} \div \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}} \right) \)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \left( {\frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{^{\gamma _{KB}^{{b_1}}(E)}{ + ^{\gamma _{KB}^{{b_2}}(E)}}}}}} \times \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}} \right) \)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{^{\gamma _{KB}^{{b_1}}(E)}{ + ^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{^{\gamma _{KB}^{{b_1}}(E)}{ + ^{\gamma _{KB}^{{b_2}}(E)}}}}}}{{\mid U{\mid ^{^{\gamma _{KB}^{{b_1}}(E)}{ + ^{\gamma _{KB}^{{b_2}}(E)}}}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}\)
\(= - \frac{{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid \mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid \mid U \mid }}\)
\(=M{Q_{KB}}({b_1};{b_2})\).
\(M{Q_{KB}}({b_1};{b_2}) = M{Q_{KB}}({b_1}) + M{Q_{KB}}({b_2}) - M{Q_{KB}}({b_1},{b_2})\) holds.
Proof of property 6
Proof From (33) and (35)–(36), we know
\(M{Q_{KB}}({b_1}) = - \frac{{\gamma _{KB}^{{b_1}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }}{{\mid U \mid }}\),
\(M{Q_{KB}}({b_1}\mid {{b_2}} ) = - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}\) and
\(M{Q_{KB}}({b_1};{b_2}) = - \frac{{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid \mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid \mid U \mid }}\),
then \(M{Q_{KB}}({b_1}) - M{Q_{KB}}({b_1}\mid {{b_2}} )\)
\(= - \frac{{\gamma _{KB}^{{b_1}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }}{{\mid U \mid }} + \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}\)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_1}}(E)}}}} + \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}\)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \left( {\log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_1}}(E)}}}} - \log \frac{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}} \right) \)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \left( {\frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_1}}(E)}}}} \div \frac{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}} \right) \)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \left( {\frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_1}}(E)}}}} \times \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}} \right) \)
\(= - \frac{1}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}{{\mid U{\mid ^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }^{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}}}\)
\(= - \frac{{\gamma _{KB}^{{b_1}}(E) + \gamma _{KB}^{{b_2}}(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) } \mid \mid {N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid }}{{\mid {N_{KB}^{{b_1}}\left( {{L_i}} \right) \cap N_{KB}^{{b_2}}\left( {{L_i}} \right) } \mid \mid U \mid }}\)
\(= M{Q_{KB}}({b_1};{b_2})\).
\(M{Q_{KB}}({b_1};{b_2}) = M{Q_{KB}}({b_1}) - M{Q_{KB}}({b_1}\mid {{b_2}} )\) holds.
Proof of property 7
Proof From Property 4 and 6, we know \(M{Q_{KB}}({b_1};{b_2}) \!= M{Q_{KB}}({b_2};{b_1})\) and \({Q_{KB}}({b_2};{b_1}) = M{Q_{KB}}({b_2}) - M{Q_{KB}}\) \(({b_2}\mid {{b_1}} \), then \(M{Q_{KB}}({b_1};{b_2}) = M{Q_{KB}}({b_2}) - M{Q_{KB}}({b_2}\mid {{b_1})}\) holds.
Proof of property 8
Proof From (38), we know
\(M{Q_{P{B^{pes}}}}(E;B) = - \frac{{1 + \gamma _{P{B^{pes}}}^B(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid }\log \) \( \frac{{\mid {{N_E}\left( {{L_i}} \right) } \mid \mid {N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid }}{{\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid \mid U \mid }}\) and
\(M{Q_{P{B^{pes}}}}(E;J)\mathrm{{ = }} - \frac{{1 + \gamma _{P{B^{pes}}}^J(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \) \( \frac{{\mid {{N_E}\left( {{L_i}} \right) } \mid \mid {N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid }}{{\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid \mid U \mid }}\).
According (28)-(30) and \(J \subseteq B \subseteq C\), we know \(\mid {N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid \le \mid {N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid \) and \(\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^B\left( {{L_i}} \right) }\) \( \mid \le \mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid \), then the size between \(\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {{N_E}\left( {{L_i}} \right) } \mid \mid {N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid }}{{\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid \mid U \mid }}\) and \(\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {{N_E}\left( {{L_i}} \right) } \mid \mid {N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid }}{{\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid \mid U \mid }}\) is unknown.
From Property 1, we know \(\frac{{1 + \gamma _{P{B^{pes}}}^J(E)}}{{\mid U \mid }} \le \frac{{1 + \gamma _{P{B^{pes}}}^B(E)}}{{\mid U \mid }}\), because the size between
\(\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {{N_E}\left( {{L_i}} \right) } \mid \mid {N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid }}{{\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid \mid U \mid }}\) and \(\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {{N_E}\left( {{L_i}} \right) } \mid \mid {N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid }}{{\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid \mid U \mid }}\) is unknown, so the size of mutual information between
\(M{Q_{P{B^{pes}}}}(E;B) = - \frac{{1 + \gamma _{P{B^{pes}}}^B(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {{N_E}\left( {{L_i}} \right) } \mid \mid {N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid }}{{\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^B\left( {{L_i}} \right) } \mid \mid U \mid }}\) and
\(M{Q_{P{B^{pes}}}}(E;J)\mathrm{{ = }} - \frac{{1 + \gamma _{P{B^{pes}}}^J(E)}}{{\mid U \mid }}\mathop \sum \limits _{i = 1}^{\mid U \mid } \log \frac{{\mid {{N_E}\left( {{L_i}} \right) } \mid \mid {N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid }}{{\mid {{N_E}\left( {{L_i}} \right) \cap N_{P{B^{pes}}}^J\left( {{L_i}} \right) } \mid \mid U \mid }}\) is unknown, Property 8 holds.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xu, J., Zhou, C., Xu, S. et al. Feature selection based on multi-perspective entropy of mixing uncertainty measure in variable-granularity rough set. Appl Intell 54, 147–168 (2024). https://doi.org/10.1007/s10489-023-05194-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10489-023-05194-z