Advanced environmental adaptation method | Applied Intelligence Skip to main content
Log in

Advanced environmental adaptation method

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Many nature-inspired algorithms have been designed to solve optimization problems by combining randomization with exploitation and exploration. Randomization plays a vital role in defining the convergence rate and performance of the algorithm. However, excessive use of randomization may adversely affect the performance of the algorithm. Therefore, a proper balance in randomization, exploitation, and exploration is required to improve the convergence rate of the algorithm. One of the methods to solve the optimization problems is Environmental Adaptation Method. It is a randomized algorithm that works on the theory of adaptive learning. It was followed by an enhanced version named Improved Environmental Adaptation Method. Both of these algorithms used binary encoding to represent the solutions. Since binary encoding requires extra efforts to convert a binary solution to a real solution, a real parameter version of the algorithm will be a good alternative to solve problems. In this paper, we present a new real parameter algorithm named Advanced Environmental Adaptation Method with a novel approach to balance randomization, exploitation, and exploration. This is achieved using operators that make it efficient to search for optimal global solutions. We compare the performance of this new algorithm with other state-of-the-art algorithms. The results show the superiority of the proposed algorithm over existing algorithms. We also demonstrate the effectiveness of the proposed algorithm for real-life problems by applying it to the salient object detection problem, which is an emerging problem in computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Goldberg DE, Holland HJ (1988) Genetic algorithms and machine learning. Mach Learn 3(2–3):95–99

    Article  Google Scholar 

  2. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  3. Rechenberg I (1989) Evolution strategy: nature’s way of optimization. In: Optimization: methods and applications, possibilities and limitations. Springer, Berlin, pp 106–126

  4. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp 39–43

  5. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  6. Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2, pp 1470–1477

  7. Xing LN, Rohlfshagen P, Chen YW, Yao X (2011) A hybrid ant colony optimization algorithm for the extended capacitated arc routing problem. IEEE Trans Syst Man Cybern B Cybern 41(4):1110–1123

    Article  Google Scholar 

  8. Basturk B (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 2006

  9. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  10. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  11. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  12. Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29:464–483

    Article  Google Scholar 

  13. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  14. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  15. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    Article  MathSciNet  MATH  Google Scholar 

  16. Das S, Mukhopadhyay A, Roy A, Abraham A, Panigrahi BK (2010) Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization. IEEE Trans Syst Man Cybern B Cybern 41(1):89–106

    Article  Google Scholar 

  17. Van Laarhoven PJM, Aarts EHL (1987) Simulated annealing. In: Simulated annealing: theory and applications. Springer, pp 7–15

  18. Erol OK, Eksin I (2006) A new optimization method: big bang--big crunch. Adv Eng Softw 37(2):106–111

    Article  Google Scholar 

  19. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  20. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  21. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    Google Scholar 

  22. Mishra KK, Tiwari S, Misra AK (2011) A bio inspired algorithm for solving optimization problems. In: Computer and Communication Technology (ICCCT), 2011 2nd International Conference on. IEEE

  23. Mishra KK, Tiwari S, Misra AK (2012) Improved environmental adaption method for solving optimization problems. In: Computational intelligence and intelligent systems. Springer, Berlin, pp 300–313

  24. Mishra KK, Tiwari S, Misra AK (2014) Improved environmental adaption method and its application in test case generation. J Intell Fuzzy Syst 27(5):2305–2317

    Article  Google Scholar 

  25. Sharma B, Prakash R, Tiwari S, Mishra KK (2017) A variant of environmental adaptation method with real parameter encoding and its application in economic load dispatch problem. Appl Intell 47(2):409–429

    Article  Google Scholar 

  26. Singh T, Singh R, Mishra KK (2018) Software cost estimation using environmental adaptation method. Procedia Comput Sci 143:325–332

    Article  Google Scholar 

  27. Singh N, Mohanty SR, Shukla RD (2017) Short term electricity price forecast based on environmentally adapted generalized neuron. Energy 125:127–139

    Article  Google Scholar 

  28. Punhani A, Kumar P (2017) Optimal extra links placement in mesh interconnection network using improved environmental adaptation method. J Intell Fuzzy Syst 32(5):3285–3295

    Article  Google Scholar 

  29. Singh P, Dwivedi P, Kant V (2019) A hybrid method based on neural network and improved environmental adaptation method using controlled Gaussian mutation with real parameter for short-term load forecasting. Energy 174:460–477

    Article  Google Scholar 

  30. Singh N, Mishra KK, Bhatia S (2020) SEAM-an improved environmental adaptation method with real parameter coding for salient object detection. Multimedia Tools Appl:1–16

  31. Hoffmeister F, Bäck T (1991) Genetic algorithms and evolution strategies: similarities and differences. Springer, Berlin

    Google Scholar 

  32. Weicker K, Weicker N (1999) On evolution strategy optimization in dynamic environments. In: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on., vol 3. IEEE

  33. Hansen N (2006) The CMA evolution strategy: a comparing review. In: Towards a new evolutionary computation. Springer, Berlin, pp 75–102

  34. Loshchilov I (2013) CMA-ES with restarts for solving CEC 2013 benchmark problems. In: 2013 IEEE congress on evolutionary computation. Ieee, pp 369–376

  35. Finck S et al (2010) Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February

  36. Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA (2006) A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM

  37. Gämperle R, Müller SD, Koumoutsakos P (2002) A parameter study for differential evolution. Adv Intell Syst Fuzzy Syst Evol Comput 10:293–298

    Google Scholar 

  38. Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462

    Article  MATH  Google Scholar 

  39. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  40. Omran MGH, Salman A, Engelbrecht AP (2005) Self-adaptive differential evolution. In: Computational intelligence and security. Springer, Berlin, pp 192–199

    Chapter  Google Scholar 

  41. Ali MM, Törn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10):1703–1725

    Article  MathSciNet  MATH  Google Scholar 

  42. Brest J et al (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  43. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  44. Bosman PAN, Grahl J, Thierens D (2013) Benchmarking parameter-free AMaLGaM on functions with and without noise. Evol Comput 21(3):445–469

    Article  Google Scholar 

  45. Dong W, Zhou M (2016) A supervised learning and control method to improve particle swarm optimization algorithms. IEEE Trans Syst Man Cybern Syst 47(7):1135–1148

    Article  Google Scholar 

  46. Yuan W, Liu Y, Wang H, Cao Y (2016) A geometric structure-based particle swarm optimization algorithm for multiobjective problems. IEEE Trans Syst Man Cybern Syst 47(9):2516–2537

    Google Scholar 

  47. Rahman IU, Wang Z, Liu W, Ye B, Zakarya M, Liu X (2020) An N-state Markovian jumping particle swarm optimization algorithm. IEEE Trans Syst Man Cybern Syst

  48. Finck S, Hansen N, Ros R, Auger A Real-parameter black-box optimization benchmarking2010: presentation of the noiseless functions. http://coco.lri.fr/downloads/download15.02/bbobdocfunctions.pdf

  49. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102. https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  50. Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506. https://doi.org/10.1080/00207160108805080

  51. Mirjalili S, Andrew L (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. In: Swarm and evolutionary computation, vol 9, pp 1–14. https://doi.org/10.1016/j.swevo.2012.09.002

  52. Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained RealParameter numerical optimization. Technical Report, Nanyang Technological University, Singapore

  53. Borji A, Cheng MM, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  MATH  Google Scholar 

  54. Singh N, Arya R, Agrawal RK (2014) A novel approach to combine features for salient object detection using constrained particle swarm optimization. Pattern Recogn 47(4):1731–1739

    Article  Google Scholar 

  55. Liu T, Yuan Z, Sun-Wang J, Zheng N, Tang X, Shum HY (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33:353–366

    Article  Google Scholar 

  56. Singh N, Arya R, Agrawal RK (2017) A novel position prior using fusion of rule of thirds and image center for salient object detection. Multimed Tools Appl 76(8):10521–10538

    Article  Google Scholar 

  57. Singh N, Arya R, Agrawal RK (2016) A convex hull approach in conjunction with Gaussian mixture model for salient object detection. Digit Signal Process 55:22–31

    Article  Google Scholar 

  58. Singh N, Arya R, Agrawal RK (2017) Performance enhancement of salient object detection using super pixel based Gau ssian mixture model. Multimed Tools Appl 77:1–19

    Google Scholar 

  59. Singh N (2020) Saliency threshold: a novel saliency detection model using Ising’s theory on ferromagnetism (STIF). Multimedia Systems 26:397–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Mishra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, K.K., Singh, N., Punhani, A. et al. Advanced environmental adaptation method. Appl Intell 53, 9068–9088 (2023). https://doi.org/10.1007/s10489-022-03923-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03923-4

Keywords

Navigation