K-means properties on six clustering benchmark datasets | Applied Intelligence Skip to main content
Log in

K-means properties on six clustering benchmark datasets

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper has two contributions. First, we introduce a clustering basic benchmark. Second, we study the performance of k-means using this benchmark. Specifically, we measure how the performance depends on four factors: (1) overlap of clusters, (2) number of clusters, (3) dimensionality, and (4) unbalance of cluster sizes. The results show that overlap is critical, and that k-means starts to work effectively when the overlap reaches 4% level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://archive.ics.uci.edu/ml/datasets.html?format=&task=clu

  2. https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data

  3. https://ifcs.boku.ac.at/repository/

  4. https://github.com/deric/clustering-benchmark

  5. http://www.gagolewski.com/resources/data/clustering/

  6. https://data.world/datasets/clustering

References

  1. Forgy E (1965) Cluster analysis of multivariate data: efficiency vs. interpretability of classification. Biometrics 21:768

    Google Scholar 

  2. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Berkeley symposium on mathematical statistics and probability, volume 1: statistics. University of California Press, Berkeley, pp 281–297

  3. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    Article  MathSciNet  Google Scholar 

  4. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31:651–666

    Article  Google Scholar 

  5. Krishna K, Murty MN (1999) Genetic k-means algorithm. IEEE Trans Syst Man Cybern Part B 29 (3):433–439

    Article  Google Scholar 

  6. Fränti P (2000) Genetic algorithm with deterministic crossover for vector quantization. Pattern Recogn Lett 21(1):61–68

    Article  Google Scholar 

  7. Fränti P, Kivijärvi J (2000) Randomized local search algorithm for the clustering problem. Pattern Anal Applic 3(4):358–369

    Article  Google Scholar 

  8. Steinley D, Brusco MJ (2007) Initializing k-means batch clustering: a critical evaluation of several techniques. J Classif 24:99–121

    Article  MathSciNet  Google Scholar 

  9. Steinbach M, Ertöz L, Kumar V (2003) The challenges of clustering high dimensional data. New Vistas in statistical physics – applications in econophysics, bioinformatics, and pattern recognition. Springer

  10. Morissette L, Chartier S (2013) The k-means clustering technique: general considerations and implementation in Mathematica. Tutor Quantitative Methods Psychol 9(1):15–24

    Article  Google Scholar 

  11. Liang J, Bai L, Dang C, Cao F (2012) The k-means-type algorithms versus imbalanced data distributions. IEEE Trans Fuzzy Syst 20(4):728–745

    Article  Google Scholar 

  12. Luxburg U, Williamson RC, Guyon I (2012) Clustering: science or art. J Mach Learn Res 27:65–79

    Google Scholar 

  13. Zhao Q, Fränti P (2014) WB-index: a sum-of-squares based index for cluster validity. Data Knowl Eng 92:77–89

    Article  Google Scholar 

  14. Zoubi M, Rawi M (2008) An efficient approach for computing silhouette coefficients. J Comput Sci 4 (3):252–255

    Article  Google Scholar 

  15. Fränti P, Virmajoki O, Hautamäki V (2006) Fast agglomerative clustering using a k-nearest neighbor graph. IEEE Trans Pattern Anal Mach Intell 28(11):1875–1881

    Article  Google Scholar 

  16. Zhang RR, Livny M (1997) BIRCH: a new data clustering algorithm and its applications. Data Min Knowl Disc 1(2):141–182

    Article  Google Scholar 

  17. Kärkkäinen I, Fränti P Dynamic local search algorithm for the clustering problem, Research Report A-2002-6

  18. Fränti P, Virmajoki O (2006) Iterative shrinking method for clustering problems. Pattern Recogn 39 (5):761–765

    Article  Google Scholar 

  19. Fränti P, Mariescu-Istodor R, Zhong C (2016) XNN graph. In: IAPR Joint int. workshop on structural, syntactic, and statistical pattern recognition merida, Mexico, LNCS 10029, pp 207– 217

    Google Scholar 

  20. Rezaei M, Fränti P (2016) Set-matching methods for external cluster validity. IEEE Trans Knowl Data Eng 28(8):2173– 2186

    Article  Google Scholar 

  21. Maitra R, Melnykov V (2010) Simulating data to study performance of finite mixture modeling and clustering algorithms. J Comput Graph Stat 19(2):354–376

    Article  MathSciNet  Google Scholar 

  22. Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is “nearest neighbor” meaningful. In: Int Conf on database theory, pp 217–235

    Google Scholar 

  23. Chavez E, Navarro G (2001) A probabilistic spell for the curse of dimensionality. Workshop on Algorithm Engineering and Experimentation LNCS 2153:147–160

    Article  Google Scholar 

  24. Tomasev N, Radovanovi M, Mladeni D, Ivanovi M (2014) The role of hubness in clustering high-dimensional data. IEEE Trans Knowl Data Eng 26(3):739–751

    Article  Google Scholar 

  25. Radovanovic M, Nanopoulos A, Ivanovic M (2010) Hubs in space: popular nearest neighbors in high-dimensional data. J Mach Learn Res 11:2487–2531

    MathSciNet  MATH  Google Scholar 

  26. Dasgupta S (2007) The hardness of k-means clustering, Technical Report CS2007-0890. University of California, San Diego

    Google Scholar 

  27. Mahajan M, Nimbhorkar P, Varadarajan K (2012) The planar k-means problem is NP-hard. Theor Comput Sci 442:13–21

    Article  MathSciNet  Google Scholar 

  28. Fränti P, Rezaei M, Zhao Q (2014) Centroid index: cluster level similarity measure. Pattern Recogn 47(9):3034–3045

    Article  Google Scholar 

  29. Steinley D, Brusco MJ, Hubert L (2016) The variance of the adjusted rand index. Psychol Methods 21 (2):261–272

    Article  Google Scholar 

  30. Kanungo T, Mount DM, Netanyahu N, Piatko C, Silverman R, Wu AY (2004) A local search approximation algorithm for k-means clustering. Comput Geom Theory Appl 28:89–112

    Article  MathSciNet  Google Scholar 

  31. Li SC, Ng YK, Zhang L (2008) A PTAS for the k-consensus structures problem under squared euclidean distance. Algorithms 1(2):43–51

    Article  MathSciNet  Google Scholar 

  32. Awasthi P, Charikar M, Krishnaswamy R, Sinop AK (2015) The hardness of approximation of euclidean k-means. In: Int. Symp. on computational geometry (SoCG). Eindhoven

  33. Arthur D, Vassilvitskii S (2007) K-means+ +: the advantages of careful seeding. In: ACM-SIAM Symp. on discrete algorithms (SODA), New Orleans, 1027-1035 January

  34. Ball GH, Hall DJ (1967) A clustering technique for summarizing multivariate data. Syst Res Behav Sci 12 (2):153–155

    Article  Google Scholar 

  35. Bradley P, Fayyad U (1998) Refining initial points for k-means clustering. In: Int. Conf. on machine learning. San Francisco, pp 91-99

  36. Steinley D (2003) Local optima in k-means clustering: what you don’t know may hurt you. Psychol Methods 8:294–304

    Article  Google Scholar 

  37. Gonzalez T (1985) Clustering to minimize the maximum intercluster distance. Theor Comput Sci 38 (2–3):293–306

    Article  MathSciNet  Google Scholar 

  38. Tezuka S, Equyer P (1991) Efficient portable combined Tausworthe random number generators. ACM Trans Model Comput Simul 1:99–112

    Article  Google Scholar 

  39. Peña J, Lozano JA, Larrañaga P (1999) An empirical comparision of four initialization methods for the k-means algorithm. Pattern Recogn Lett 20(10):1027–1040

    Article  Google Scholar 

  40. Mallah C, Cope J, Orwell J (2013) Plant leaf classification using probabilistic integration of shape, texture and margin features. Signal Process Pattern Recogn Appl

  41. Frey PW, Slate DJ (1991) Letter recognition using Holland-style adaptive classifiers. Mach Learn 6 (2):161–182

    Google Scholar 

  42. Yan D, Huang L, Jordan MI (2009) Fast approximate spectral clustering. ACM SIGKDD Int Conf on knowledge discovery and data mining, 907–916

  43. Xiong H, Wu J, Chen J (2009) K-means clustering versus validation measures: a data distribution perspective. IEEE Trans Syst Man Cybern Part B 39(2):318–331

    Article  Google Scholar 

  44. Zhou K, Yang S (2016) Exploring the uniform effect of FCM clustering: a data distribution perspective. Knowl-based Syst 96:76–83

    Article  Google Scholar 

  45. Hirsch JE (2005) An index to quantify an individual’s scientific research output. PNAS 102(46):16569–72

    Article  Google Scholar 

  46. Ben-Hur A, Horn D, Siegelmann HT, Vapnik V (2001) Support vector clustering. J Mach Learn Res 2:125–137

    MATH  Google Scholar 

  47. Balcan M-F, Blum A, Vempala S (2008) A discriminative framework for clustering via similarity functions. ACM Symposium on theory of computing, 671–680

  48. Ackerman M, Ben-David S, Brânzei S, Loker D (2012) Weighted clustering. AAAI Conf on artificial intelligence, 858–863

  49. Biçici E, Yuret D (2007) Locally scaled density based clustering. In: Int. Conf. on adaptive and natural computing algorithms. Springer, pp 739–748

  50. Pelleg D, Moore AW (2000) X-means: extending k-means with efficient estimation of the number of clusters. Int Conf on machine learning, 1

  51. Hinneburg A, Keim DA (1999) Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional clustering. Int Conf on very large databases, 506–517

  52. Domeniconi C, Gunopulos D, Ma S, Yan B, Al-Razgan M, Papadopoulos D (2007) Locally adaptive metrics for clustering high dimensional data. Data Min Knowl Disc 14(1):63–97

    Article  MathSciNet  Google Scholar 

  53. Bellman R (1961) Adaptive control processes: a guided tour. Princeton University Press

  54. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high dimensional spaces. In: Int. conf. on database theory, LNCS vol 1973. Springer, pp 420– 434

  55. Sieranoja S, Fränti P (2018) Random projection for k-means clustering. In: Int. Conf. artificial intelligence and soft computing (ICAISC). Zakopane

  56. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Statist Soc C 28 (1):100–108

    MATH  Google Scholar 

  57. Erisoglu M, Calis N, Sakallioglu S (2011) A new algorithm for initial cluster centers in k-means algorithm. Pattern Recogn Lett 32(14):1701–1705

    Article  Google Scholar 

  58. Fränti P (2018) Efficiency of random swap clustering. J Big Data 5:13:1–29

    Google Scholar 

  59. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  60. Kinnunen T, Sidoroff I, Tuononen M, Fränti P (2011) Comparison of clustering methods: a case study of text-independent speaker modeling. Pattern Recogn Lett 32(13):1604–1617

    Article  Google Scholar 

  61. Huang X, Zhang L, Wang B, Li F, Zhang Z (2018) Feature clustering based support vector machine recursive feature elimination for gene selection. Appl Intell 48:594–607

    Article  Google Scholar 

  62. Ultsch A (2005) Clustering with SOM: U*C, workshop on self-organizing maps. Paris, pp 75–82

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasi Fränti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fränti, P., Sieranoja, S. K-means properties on six clustering benchmark datasets. Appl Intell 48, 4743–4759 (2018). https://doi.org/10.1007/s10489-018-1238-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-018-1238-7

Keywords

Navigation