A novel split-and-merge algorithm for hierarchical clustering of Gaussian mixture models | Applied Intelligence Skip to main content
Log in

A novel split-and-merge algorithm for hierarchical clustering of Gaussian mixture models

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The paper presents a novel split-and-merge algorithm for hierarchical clustering of Gaussian mixture models, which tends to improve on the local optimal solution determined by the initial constellation. It is initialized by local optimal parameters obtained by using a baseline approach similar to k-means, and it tends to approach more closely to the global optimum of the target clustering function, by iteratively splitting and merging the clusters of Gaussian components obtained as the output of the baseline algorithm. The algorithm is further improved by introducing model selection in order to obtain the best possible trade-off between recognition accuracy and computational load in a Gaussian selection task applied within an actual recognition system. The proposed method is tested both on artificial data and in the framework of Gaussian selection performed within a real continuous speech recognition system, and in both cases an improvement over the baseline method has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang J (2007) Discriminative Gaussian mixtures for interactive image segmentation. In: Proc ICASSP, Honolulu, HI, vol 1, pp I-601–I-604. doi:10.1109/ICASSP.2007.365979

    Google Scholar 

  2. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286. doi:10.1109/5.18626

    Article  Google Scholar 

  3. Reynolds DA, Rose RC (1995) Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans Speech Audio Process 3(1):72–83. doi:10.1109/89.365379

    Article  Google Scholar 

  4. Shin KS, Jeong Y-S, Jeong MK (2011) A two-leveled symbiotic evolutionary algorithm for clustering problems. Appl Intel (published online 08 July 2011), doi:10.1007/s10489-011-0295-y

  5. Bahrampour S, Moshiri B, Salahshoor K (2011) Weighted and constrained possibilistic C-means clustering for online fault detection and isolation. Appl Intell 35(2):269–284. doi:10.1007/s10489-010-0219-2

    Article  Google Scholar 

  6. Korkmaz EE (2010) Multi-objective genetic algorithms for grouping problems. Appl Intell 33(2):179–192. doi:10.1007/s10489-008-0158-3

    Article  Google Scholar 

  7. Goldberger J, Roweis S (2005) Hierarchical clustering of a mixture model. Adv Neural Inf Process Syst 17:505–512

    Google Scholar 

  8. Bocchieri E (1993) Vector quantization for efficient computation of continuous density likelihoods. In: Proc ICASSP, Minneapolis, MN, vol 2, pp II-692–II-695. doi:10.1109/ICASSP.1993.319405

    Google Scholar 

  9. Knill KM, Gales MJF, Young SJ (1996) Use of Gaussian selection in large vocabulary continuous speech recognition using HMMs. In: Proc ICSLP, vol 1, pp 470–473. doi:10.1109/ICSLP.1996.607156

    Google Scholar 

  10. Simonin J, Delphin L, Damnati G (1998) Gaussian density tree structure in a multi-Gaussian HMM based speech recognition system. In: 5-th Int Conf Spok Lang Process, Sidney, Australia

    Google Scholar 

  11. Watanabe T, Shinoda K, Takagi K, Iso K-I (1995) High speed speech recognition using tree-structured probability density function. In: Proc ICASSP, vol 1, pp 556–559. doi:10.1109/ICASSP.1995.479658

    Google Scholar 

  12. Marko J, Pekar D, Jakovljevic N, Delic V (2010) Eigenvalues driven Gaussian selection in continuous speech recognition using HMM’s with full covariance matrices. Appl Intell 33(2):107–116. doi:10.1007/s10489-008-0152-9

    Article  Google Scholar 

  13. Shinoda K, Lee C-H (2001) A structural Bayes approach to speaker adaptation. IEEE Trans Speech Audio Process 9(3):276–287. doi:10.1109/89.906001

    Article  Google Scholar 

  14. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 26(1):84–95. doi:10.1109/TCOM.1980.1094577

    Article  Google Scholar 

  15. McCrosky J (2008) A new measure for clustering model selection. Master thesis, University of Waterloo, Waterloo, Ontario, Canada

  16. Axelrod S, Goel V, Gopinaht RA, Olsen PA, Visweswariah K (2005) Subspace constrained Gaussian mixture models for speech recognition. IEEE Trans Speech Audio Process 13(6):1144–1160. doi:10.1109/TSA.2005.851965

    Article  Google Scholar 

  17. Dharanipragada S, Visweswariah K (2006) Gaussian mixture models with covariances or precisions in shared multiple subspaces. IEEE Trans Audio Speech Lang Process 14(4):1255–1266. doi:10.1109/TSA.2005.860835

    Article  Google Scholar 

  18. Olsen PA, Gopinaht RA (2004) Modeling inverse covariance matrices by basis expansion. IEEE Trans Speech Audio Process 12(1):37–46. doi:10.1109/TSA.2003.819943

    Article  Google Scholar 

  19. Sun J, Kaban A (2008) A fast algorithm for robust mixtures in the presence of measurements errors. IEEE Trans Neural Netw 21(8):1206–1220. doi:10.1109/TNN.2010.2048219

    Google Scholar 

  20. Verbeek JJ, Nunnink JRJ, Vlassis N (2006) Accelerated EM-based clustering of large data sets. Data Min Knowl Disc 13:291–307. doi:10.1007/s10618-005-0033-3

    Article  MathSciNet  Google Scholar 

  21. Moore AW (1999) A very fast EM-based mixture model clustering using multiresolution kd-trees. In: Adv Neural Inf Process Syst, vol 11. MIT Press, Cambridge, pp 543–549. ISBN: 0-262-11245-0

    Google Scholar 

  22. Hershey JR, Olsen PA (2007) Approximating the Kullback Leibler divergence between Gaussian mixture models. In: Proc ICASSP, Honolulu, HI, vol 4, pp IV-317–IV-320. doi:10.1109/ICASSP.2007.366913

    Google Scholar 

  23. Zhang Z, Chen C, Sun J, Chan KL (2003) EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognit 36(9):1973–1983. doi:10.1016/S0031-3203(03)00059-1

    Article  MATH  Google Scholar 

  24. Ueda N, Nakano R, Ghahramani Z, Hinton GE (2000) Split and merge EM algorithm for improving Gaussian mixture density estimates. J VLSI Signal Process Syst Signal Image Video Technol 26(1/2):133–140. doi:10.1023/A:1008155703044

    Article  MATH  Google Scholar 

  25. Delic V (2007) A review of R&D of speech technologies in Serbian and their applications in western Balkan countries. Keynote lecture at 12th SPECOM (Speech and Computer), Moscow, Russia, pp 64–83

  26. Webb AR (1999) Statistical Pattern Recognition. Defence Evaluation and Research Agency, Arnold, UK

  27. Kannan A, Ostendorf N, Rohlicek JR (1994) Maximum likelihood clustering of Gaussian mixtures for speech recognition. IEEE Trans Speech Audio Process 2(3):453–455. doi:10.1109/89.294362

    Article  Google Scholar 

  28. Young SJ, Odell JJ, Woodland PC (1994) Tree-based state tying for high accuracy state modeling. In: Proc ARPA Workshop Hum Lang Technol, pp 307–312. doi:10.3115/1075812.1075885

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branislav Popović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popović, B., Janev, M., Pekar, D. et al. A novel split-and-merge algorithm for hierarchical clustering of Gaussian mixture models. Appl Intell 37, 377–389 (2012). https://doi.org/10.1007/s10489-011-0333-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-011-0333-9

Keywords

Navigation