Relative Cohomology of Algebraic Theories | Applied Categorical Structures
Skip to main content

Relative Cohomology of Algebraic Theories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We construct relative abelian categories in the sense of MacLane for models of algebraic systems in (co)complete abelian categories. As an example, we consider an analogue of Hochschild-Mitchell cohomology for the functor of Yoneda embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Rosický, J., Vitale, E.M.: Algebraic theories. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  2. Barr, M., Wells, C.H.: Category theory for computer scientists. Reprints in Theory and Applications of Categories (2012)

  3. Bénabou, J.: Structures algèbriques dans les catégories. Cah. Topol. Géom. Différ. Catég. 10, 1–126 (1968)

  4. Blanc, D.: Generalized André-Quillen cohomology. J. Homotopy Relat. Struct. 161-191, 3 (2008)

  5. Cartan, A., Eilenberg, S.: Homological algebra. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  6. Chiteş, A., Chiteş, C.: Separable K-linear categories. Cent. Eur. J. Math. 8, 274–281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cibils, C., Redondo, M.: Cartan-Leray spectral sequence for Galois coverings of linear categories. J. Algebra 284, 310–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crole, R.L.: Categories for types. Cambridge University Press, Cambridge (1993)

  9. Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku. Math. J., II. Ser. 9, 119–221 (1957)

  10. Herscovich, E., Solotar, A.: Hochschild-Mitchell cohomology and Galois extensions. J. Pure Appl. Alg. 209, 37–55 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jibladze, M., Pirashvili, T.: Cohomology of algebraic theories. J. Algebra 137, 253–296 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jibladze, M., Pirashvili, T.: Quillen cohomology and Baues-Wirsching cohomology of algebraic theories. Cah. Topol. Géom. Différ. Catég. 47, 163–205 (2006)

    MathSciNet  MATH  Google Scholar 

  13. MacLane, S.: Categories for the working mathematician. Springer, B (1998)

  14. MacLane, S.: Homology. Springer, B (1963)

  15. Mitchell, B.: Rings with several objects. Adv. Math. 6, 1–161 (1971)

    Article  MATH  Google Scholar 

  16. Oberst, U.: Basiserweiterung in der Homologie kleiner Kategorien. Math. Z 100, 36–58 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schwede, S.: Stable homotopy of algebraic theories. Topology 40, 1–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, F.: Hochschild and ordinary cohomology rings of small categories. Adv. Math. 219, 1872–1893 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Pol’shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pol’shin, S. Relative Cohomology of Algebraic Theories. Appl Categor Struct 25, 447–453 (2017). https://doi.org/10.1007/s10485-016-9466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-016-9466-7

Keywords

Mathematics Subject Classification (2010)