Set Functors and Filters | Applied Categorical Structures Skip to main content
Log in

Set Functors and Filters

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

For a filter \(\mathcal {F}\) let \(\mathfrak {c}_{\mathcal {F}}(\alpha )\) be the cardinality of the set of all filters isomorphic to \(\mathcal {F}\) on a cardinal α. We derive formulas for these functions similar to cardinal exponential formulas. We show that precise values of the function \(\mathfrak {c}_{\mathcal {F}}\) depends on the filter \(\mathcal {F}\) and also on the axioms of set theory. We apply these results to get a description of the function \(\mathfrak {b}_{F}\) for a set functor F (\(\mathfrak {b}_{F}(\alpha )\) is the cardinality of F α for a cardinal α). We prove that the function \(\mathfrak {b}_{F}\) depends on the functor F and on the axioms of set theory. For a partial cardinal function \(\mathfrak {d}\), we find a sufficient condition for the existence of a set functor F with \(\mathfrak {d}(\alpha )=\mathfrak {b}_{F}(\alpha )\) for all cardinals α such that \( \mathfrak {d}(\alpha )\) is defined. We prove that a functor F is finitary if and only if there exists a cardinal β such that \(\mathfrak {b}_{F}(\alpha )\le \alpha \) for every cardinal αβ. We prove an analogous necessary condition for small set functors and we prove that the precise characterization of small set functors depends on the axioms of set theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer, Dordrecht (1990)

    MATH  Google Scholar 

  2. Barkhudaryan, A.: Endofunctors of set determined by their object map. Appl. Categ. Struct. 11, 507–520 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barkhudaryan, A., El Bashir, R., Trnková, V.: Endofunctors of set. In: Herrlich, H., Porst, H.-E. (eds.) Proceedings of the Conference Categorical Methods in Algebra and Topology, Bremen 2000, pp. 47–55. Mathematik-Arbeitspapiere 54 (2000)

  4. Barkhudaryan, A., El Bashir, R., Trnková, V.: Endofunctors of set and cardinalities. Cahiers de Topo. et Geo. Diff. Categoriques 44, 217–238 (2003)

    MATH  Google Scholar 

  5. Barkhudaryan, A., Koubek, V., Trnková, V.: Structural properties of endofunctors of SET. Cahiers de Topo. Geom. Diff. Categoriques 47, 242–260 (2006)

    MATH  Google Scholar 

  6. Barto, L.: Weakly terminal objects in quasicategories of \(\mathbb {S}\mathbb {E}\mathbb {T}\) endofunctors. Appl. Categ. Struct. 13, 257–264 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baumgartner, J.E.: Applications of the proper forcing axioms. In: Handbook of Set-Theoretic Topology, pp. 913–959. North Holland, Amsterdam (1984)

    Book  Google Scholar 

  8. Bergman, G.M.: Functors from finite sets to finite sets, preprint, (the preprint can be viewed at http://math.berkeley.edu/%7Egbergman/papers/unpub/FS.pdf) (1972)

  9. Dougherty, R.: Functors on the category of finite sets. Trans. Amer. Math. Soc. 330, 839–886 (1992)

    Article  MathSciNet  Google Scholar 

  10. Freyd, P.: On the concreteness of certain categories, preprint (1969)

  11. Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer-Verlag, New York (1976)

    MATH  Google Scholar 

  12. Isbell, J.R.: Adequate subcategories. Illinois J. Math. 4, 541–552 (1960)

    MATH  MathSciNet  Google Scholar 

  13. Jech, T.: Set Theory. Academic, New York (1978)

    Google Scholar 

  14. Koubek, V.: Set functors. Comment. Math. Univ. Carolinae 12, 175–195 (1971)

    MATH  MathSciNet  Google Scholar 

  15. Koubek, V.: Set functors II – Contravariant case. Comment. Math. Univ. Carolinae 14, 47–59 (1973)

    MATH  MathSciNet  Google Scholar 

  16. Pultr, A., Trnková, V.: Combinatorial Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam (1980)

    MATH  Google Scholar 

  17. Rhineghost, Y.T.: The Functor that wouldn’t be – A Contribution to the Theory of Things that Fail to Exist, pp. 29–36. Categorical Perspectives, Trends in Mathematics, Birkhäuser (2001)

  18. Rhineghost, Y.T.: The Emergence of Functors – A Continuation of ‘The functor that wouldn’t be’, pp. 37–46. Categorical Perspectives, Trends in Mathematics, Birkhäuser (2001)

  19. Riordan, J.: An Introduction to Combinatorial Analysis. Willey, New York (1980)

    Book  MATH  Google Scholar 

  20. Trnková, V.: Some properties of set functors. Comment. Math. Univ. Carolinae 10, 323–352 (1969)

    MATH  MathSciNet  Google Scholar 

  21. Trnková, V.: On descriptive classification of set functors I. Comment. Math. Univ. Carolinae 12, 143–175 (1971)

    MATH  MathSciNet  Google Scholar 

  22. Trnková, V.: On descriptive classification of set functors II. Comment. Math. Univ. Carolinae 12, 345–357 (1971)

    MATH  MathSciNet  Google Scholar 

  23. Zmrzlina, A.: Too Many Functors – a Continuation of ‘The Emergence of Functors’, pp. 47–62. Categorical Perspectives, Trends in Mathematics, Birkhäuser (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Koubek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koubek, V., Trnková, V. Set Functors and Filters. Appl Categor Struct 23, 337–363 (2015). https://doi.org/10.1007/s10485-014-9367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-014-9367-6

Keywords

Mathematics Subject Classifications (2010)

Navigation