Notes on Exact Meets and Joins | Applied Categorical Structures Skip to main content
Log in

Notes on Exact Meets and Joins

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

An exact meet in a lattice is a special type of infimum characterized by, inter alia, distributing over finite joins. In frames, the requirement that a meet is preserved by all frame homomorphisms makes for a slightly stronger property. In this paper these concepts are studied systematically, starting with general lattices and proceeding through general frames to spatial ones, and finally to an important phenomenon in Scott topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aull, C.E., Thron, W.J.: Separation axioms between T 0 and T 1. Indag. Math. 24, 26–37 (1963)

    MathSciNet  Google Scholar 

  2. Ball, R.N.: Distributive Cauchy lattices. Algebra Univers. 18, 134–174 (1984)

    Article  MATH  Google Scholar 

  3. Ball, R.N., Walters-Wayland, J., Zenk, E.: The P-frame reflection of a completely regular frame. Topology Appl. 158, 1778–1794 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Banaschewski, B., Pultr, A.: Variants of openness. Appl. Categ. Struct. 2, 331–350 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Banaschewski, B., Pultr, A.: Pointfree aspects of the T D axiom of classical topology. Quaest. Math. 33, 369–385 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bruns, G.: Darstellungen und Erweiterungen geordneter Mengen II. J. für Math. 210, 1–23 (1962)

    MathSciNet  Google Scholar 

  7. Bruns, G., Lakser, H.: Injective hulls of semilattices. Canad. Math. Bull. 13, 115–118 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, X.: On the paracompactness of frames. Comment. Math. Univ. Carolinae 33, 485–491 (1992)

    MATH  Google Scholar 

  9. Dowker, C.H., Papert, D.: Paracompact frames and closed maps. Symp. Math. 16, 93–116 (1975)

    Google Scholar 

  10. Ferreira, M.J., Picado, J.: On point-finiteness in pointfree topology. Appl. Categ. Struct. 15, 185–198 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hofmann, K.H., Lawson, J.D.: The spectral theory of distributive continuous lattices. Trans. Amer. Math. Soc. 246, 285–310 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)

    MATH  MathSciNet  Google Scholar 

  13. Johnstone, P.T.: Stone spaces. In: Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  14. Michael, E.: Another note on paracompact spaces. Proc. Amer. Math. Soc. 8, 822–828 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  15. Picado, J., Pultr, A.: Frames and locales (topology without points), Frontiers in Mathematics, vol. 28. Springer, Basel (2012)

    Google Scholar 

  16. Plewe, T.: Sublocale lattices. J. Pure Appl. Algebra 168, 309–326 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pultr, A.: Frames. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 3, pp. 791–857. Elsevier (2003)

  18. Todd Wilson, J.: The Assembly Tower and Some Categorical and Algebraic Aspects of Frame Theory. PhD Thesis, Carnegie Mellon University (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Picado.

Additional information

Dedicated to George Janelidze on the occasion of his 60th birthday

Ball and Pultr were partially supported by a University of Denver PROF grant and by CE-ITI under the project P202/12/G061 of GAĞR. Picado was partially supported by CMUC/FCT, through the program COMPETE/FEDER, and grant MTM2012-37894-C02-02 of the Ministry of Economy and Competitiveness of Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, R.N., Picado, J. & Pultr, A. Notes on Exact Meets and Joins. Appl Categor Struct 22, 699–714 (2014). https://doi.org/10.1007/s10485-013-9345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9345-4

Keywords

Mathematics Subject Classification (2010)

Navigation