Association Schemoids and Their Categories | Applied Categorical Structures Skip to main content
Log in

Association Schemoids and Their Categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We propose the notion of association schemoids generalizing that of association schemes from small categorical points of view. In particular, a generalization of the Bose–Mesner algebra of an association scheme appears as a subalgebra in the category algebra of the underlying category of a schemoid. In this paper, the equivalence between the categories of groupoids and that of thin association schemoids is established. Moreover linear extensions of schemoids are considered. A general theory of the Baues–Wirsching cohomology deduces a classification theorem for such extensions of a schemoid. We also introduce two relevant categories of schemoids into which the categories of schemes due to Hanaki and due to French are embedded, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras. 1: Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  2. Bang, S., Hirasaka, M.: Construction of association schemes from difference sets. Eur. J. Comb. 26, 59–74 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park (1984)

  4. Baues, H.J.: Algebraic homotopy. Cambridge Studies in Advanced Mathematics, vol. 15. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  5. Baues, H.J., Dreckmann, W.: The cohomology of homotopy categories and the general linear group. K-Theory 3, 307–338 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baues, H.J., Wirsching, G.: Cohomology of small categories. J. Pure Appl. Algebra 38, 187–211 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berger, C., Leinster, T.: The Euler characteristic of a category as the sum of a divergent series. Homology, Homotopy Appl. 10, 41–51 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Delsarte, P.: An algbebraic approach to the association schemes of coding theory. Philips Res. Reports Suppl. 10, (1973)

  9. French, C.: Functors from association schemes. J. Comb. Theory A 120, 1141–1165 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band vol. 35. Springer-Verlag New York, Inc., New York (1967)

    Google Scholar 

  11. Hanaki, A.: A category of association schemes. J. Comb. Theory A 117, 1207–1217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jaeger, F.: Towards a classification of spin models in terms of association schemes. Adv. Stud. Pure Math. 24, 197–225 (1996)

    MathSciNet  Google Scholar 

  13. Jaeger, F., Matsumoto, M., Nomura, K.: Bose–Mesner algebras related to type II matrices and spin models. J. Algebr. Comb. 8, 39–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. 12, 103–111 (1985)

    Article  MATH  Google Scholar 

  15. D. M. Latch, The uniqueness of homology for category of small categories, J. Pure Appl. Algebra 9, 221–237 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nomura, K.: Spin models constructed from Hadamard matrices. J. Comb. Theory A 68, 251–261 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ponomarenko, I., Zieschang, P.-H.: Preface. Eur. J. Comb. 30, 1387–1391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Terwilliger, P.: The subconstituent algebra of an association scheme I. J. Algebr. Comb. 1(4), 363–388 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Thomason, R.W.: Cat as a closed model category. Cahirs Topologie G’eom. Diff’erentielle cat’eg. 21, 305–324 (1980)

    MATH  MathSciNet  Google Scholar 

  20. Zieschang, P.-H.: Homogeneous coherent configurations as generalized groups and their relationship to buildings. J. Algebra 178, 677–709 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zieschang, P.-H.: Theory of association schemes. Springer Monographs in Math. Springer-Verlag, Berlin (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Kuribayashi.

Additional information

This research was partially supported by a Grant-in-Aid for Scientific Research HOUGA 25610002 from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuribayashi, K., Matsuo, K. Association Schemoids and Their Categories. Appl Categor Struct 23, 107–136 (2015). https://doi.org/10.1007/s10485-013-9327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9327-6

Keywords

Mathematics Subject Classifications (2010)

Navigation