Differential Structure, Tangent Structure, and SDG | Applied Categorical Structures Skip to main content
Log in

Differential Structure, Tangent Structure, and SDG

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In 1984, J. Rosický gave an abstract presentation of the structure associated to tangent bundle functors in differential and algebraic geometry. By slightly generalizing this notion, we show that tangent structure is also fundamentally related to the more recently introduced Cartesian differential categories. In particular, tangent structure of a trivial bundle is precisely the same as Cartesian differential structure. We also provide a general result which shows how tangent structure arises from the manifold completion (in the sense of M. Grandis) of a differential restriction category. This construction includes all standard atlas-based constructions from differential geometry. Furthermore, we tighten the relationship, which Rosický had noted, between representable tangent structure and synthetic differential geometry, showing how such settings can be developed from a system of infinitesimal objects. We also show how infinitesimal objects give rise to dual tangent structure. Taken together, these results show that tangent structures appropriately span a very wide range of definitions, from the syntactic and structural differentials arising in computer science and combinatorics, through the concrete manifolds of algebraic and differential geometry, and finally to the abstract definitions of synthetic differential geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, M.: Categories of Containers. PhD Thesis, University of Leicester (2003)

  2. Abbott, M., Altenkirch, T., Gahni, N., McBride, C.: Derivatives of Containers. In: TLCA’03 Proceedings of the 6th international conference on Typed lambda calculi and applications, LNCS 2701, pp. 16–30 (2003)

  3. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-like Structures. Encyclopedia of Mathematics and its Applications (1997)

  4. Blute, R., Ehrhard, T., Tasson, C.: A convenient differential category. Cahiers de Topologie et Geométrie Différential Catégoriques 53(3), 211–232 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Blute, R., Cockett, R., Seely, R.: Cartesian differential categories. Theory Appl. Categ. 22, 622–672 (2008)

    MathSciNet  Google Scholar 

  6. Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Categorical models for simply typed resource lambda-calculus, MFPS (2010)

  7. Cockett, R., Cruttwell, G., Gallagher, J.: Differential restriction categories. Theor. Appl. Categ. 25, 537–613 (2011)

    MATH  MathSciNet  Google Scholar 

  8. Cockett, R., Lack, S.: Restriction categories I: categories of partial maps. Theor. Comput. Sci. 270(2), 223–259 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cockett, R., Lack, S.: Restriction categories III: colimits, partial limits, and extensivity. Math. Struct. Comput. Sci. 17, 775–817 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockett, R., Seely, R.: The Faà di Bruno construction. Theor. Appl. Categ. 25, 383–425 (2011)

    MathSciNet  Google Scholar 

  11. Ehrhard, T.: On Köethe sequence spaces and linear logic. Math. Struct. Comput. Sci. 12, 579–623 (2001)

    MathSciNet  Google Scholar 

  12. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci. 309(1), 1–41 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grandis, M.: Manifolds as enriched categories. In: Categorical Topology (Prague 1988), pp. 358–368 (1989)

  14. Kólǎr, I.: Natural transformations of the second tangent functor into itself. Arch. Math. (Brno) 20(4), 169–172 (1984)

    MathSciNet  Google Scholar 

  15. Kriegl, A., Michor, P.: The convenient setting of global analysis. AMS Mathematical Surveys and Monographs, vol. 53 (1997)

  16. Kock, A.: Synthetic Differential Geometry. Cambridge University Press, 2nd edn. (2006). Also available at http://home.imf.au.dk/kock/sdg99.pdf. Accessed 23 April 2013

  17. Kock, A.: Convenient vector spaces embed into the Cahiers topos. Cah. Topol. Géom. Différ. Catég. 27(1), 3–17 (1986)

    MathSciNet  Google Scholar 

  18. Kock, A., Reyes, G.: Corrigendum and addenda to: convenient vector spaces embed into the Cahiers topos. Cah. Topol. Géom. Différ. Catég. 28(2), 99–110 (1986)

    MathSciNet  Google Scholar 

  19. Kock, A., Reyes, G.: Connections in formal differential geometry. In: Topos Theoretic Methods in Geometry. Aarhus Math. Inst. Var. Publ. Series, No. 30 (1979)

  20. Lawvere, W.: Euler’s continuum functorially vindicated. In: Logic, Mathematics, Philosophy: Vintage Enthusiasms (Essays in Honour of John L. Bell), the Western Ontario Series in Philosophy of Science. Springer (2011)

  21. Manzyuk, O. Tangent bundles in differential lambda-categories (2012). Available at arXiv:1202.0411

  22. Moerdijk, I., Reyes, G.: Models for Smooth Infinitesimal Analysis. Springer (1991)

  23. Nishimura, H.: Axiomatic Differential Geometry (2012). arXiv:1203.3911

  24. Rosický, J.: Abstract tangent functors. Diagrammes 12(3), 1–11 (1984)

    Google Scholar 

  25. Street, R.: Skew-closed categories (2012). arXiv:1205.6522v3 [math.CT]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. H. Cruttwell.

Additional information

Partially supported by the Centre National de la Recherche Scientifique (CNRS, France), the Institut de Mathematiques de Luminy (IML, Marseille), and by the National Science and Engineering Research Council (NSERC, Canada).

Partially supported by the Pacific Institute for the Mathematic Sciences (PIMS) and NSERC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockett, J.R.B., Cruttwell, G.S.H. Differential Structure, Tangent Structure, and SDG. Appl Categor Struct 22, 331–417 (2014). https://doi.org/10.1007/s10485-013-9312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9312-0

Keywords

Navigation