Deep Inference and Probabilistic Coherence Spaces | Applied Categorical Structures
Skip to main content

Deep Inference and Probabilistic Coherence Spaces

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

This paper proposes a definition of categorical model of the deep inference system BV, defined by Guglielmi. Deep inference introduces the idea of performing a deduction in the interior of a formula, at any depth. Traditional sequent calculus rules only see the roots of formulae. However in these new systems, one can rewrite at any position in the formula tree. Deep inference in particular allows the syntactic description of logics for which there is no sequent calculus. One such system is BV, which extends linear logic to include a noncommutative self-dual connective. This is the logic our paper proposes to model. Our definition is based on the notion of a linear functor, due to Cockett and Seely. A BV-category is a linearly distributive category, possibly with negation, with an additional tensor product which, when viewed as a bivariant functor, is linear with a degeneracy condition. We show that this simple definition implies all of the key isomorphisms of the theory. We consider Girard’s category of probabilistic coherence spaces and show that it contains a self-dual monoidal structure in addition to the *-autonomous structure exhibited by Girard. This structure makes the category a BV-category. We believe this structure is also of independent interest, as well-behaved noncommutative operators generally are.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored *-categories. J. Pure Appl. Algebra 143, 3–47 (2000)

    Article  MathSciNet  Google Scholar 

  2. Barr, M.: *-autonomous Categories. Springer Lecture Notes in Mathematics 752 (1980)

  3. Blute, R., Cockett, J.R.B., Seely, R.A.G., Trimble, T.: Natural deduction and coherence for weakly distributive categories. J. Pure Appl. Algebra 13, 229–296 (1996)

    Article  MathSciNet  Google Scholar 

  4. Blute, R., Ivanov, I., Panangaden, P.: Discrete quantum causal dynamics. Int. J. Theor. Phys. 42, 2025–2041 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brünner, K.: Deep inference and symmetry in classical proofs. Ph.D. thesis, Dresden Technical University (2003)

  6. Cockett, J.R.B., Seely, R.A.G.: Weakly distributive categories. J. Pure Appl. Algebra 114, 133–173 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockett, J.R.B., Seely, R.A.G.: Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. Theory Appl. Categ. 5, 85–131 (1997)

    MathSciNet  Google Scholar 

  8. Cockett, J.R.B., Seely, R.A.G.: Linearly distributive functors. J. Pure Appl. Algebra 143, 155–203 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Danos, V., Ehrhard, T.: On Probabilistic Coherence Spaces (2008, preprint)

  10. Danos, V., Harmer, R.: Probabilistic Games Semantics. In: Proceedings of Logic in Computer Science (2000)

  11. Ehrhard, T.: Finiteness spaces. Math. Struct. Comput. Sci. 15, 615–646 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrhard, T.: On Köthe sequence spaces and linear logic. Math. Struct. Comput. Sci. 12, 579–623 (2001)

    MathSciNet  Google Scholar 

  13. Führmann, C., Pym, D.: On categorical models of classical logic and the geometry of interaction. Math. Struct. Comput. Sci. 17, 957–1027 (2007)

    Article  MATH  Google Scholar 

  14. Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girard, J.Y.: Between logic and quantic: a tract. In: Ehrhard, T., et al. (eds.) Linear Logic in Computer Science. Cambridge University Press (2003)

  16. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Log. 8(1:1), 1–64 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hughes, D.: Deep inference proof theory equals categorical proof theory minus coherence (2004, preprint)

  18. Hyland, M., Schalk, A.: Glueing and orthogonality for models of linear logic. Theor. Comp. Sci. 294, 183–231 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamarche, F.: Exploring the gap between linear and classical logic. Theory Appl. Categ. 18, 473–535 (2007)

    MathSciNet  MATH  Google Scholar 

  20. McKinley, R.: Classical categories and deep inference (2005, preprint)

  21. Melliés, P.-A.: Double categories: a modular model of multiplicative linear logic. Math. Struct. Comput. Sci. 12, 449–479 (2002)

    Article  MATH  Google Scholar 

  22. Retoré, C.: Pomset logic: a non-commutative extension of classical linear logic. In: Proceedings of TLCA’97. LNCS, vol. 1210, pp. 300–318 (1997)

  23. Seely, R.A.G.: Linear logic, *-autonomous categories and cofree coalgebras. Contemporary Mathematics, vol. 92. American Mathematical Society (1989)

  24. Strassburger, L.: On the axiomatisation of boolean categories with and without medial. Theory Appl. Categ. 18, 536–601 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Tiu, A.: A system of interaction and structure II: the need for deep inference. Logical Methods in Computer Science 2, 1–24 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Blute.

Additional information

Research supported in part by National Science and Engineering Research Council, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blute, R., Panangaden, P. & Slavnov, S. Deep Inference and Probabilistic Coherence Spaces. Appl Categor Struct 20, 209–228 (2012). https://doi.org/10.1007/s10485-010-9241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-010-9241-0

Keywords

Mathematics Subject Classifications (2010)