Abstract
Algebraic systems play in the theory of algebraizability of π-institutions the role that algebras play in the theory of algebraizable sentential logics. In this same sense, ℐ-algebraic systems are to a π-institution ℐ what \(\mathcal{S}\) -algebras are to a sentential logic \(\mathcal{S}\) . More precisely, an (ℐ,N)-algebraic system is the sentence functor reduct of an N′-reduced (N,N′)-full model of a π-institution ℐ. Algebraic systems are formally introduced and their relationship with full models and with bilogical morphisms is investigated.
Similar content being viewed by others
References
Barr, M. and Wells, C.: Category Theory for Computing Science, 3rd edn, Les Publications CRM, Montréal, 1999.
Blok, W. J. and Pigozzi, D.: Protoalgebraic logics, Studia Logica 45 (1986), 337–369.
Blok, W. J. and Pigozzi, D.: Algebraizable logics, Mem. Amer. Math. Soc. 77(396) (1989).
Blok, W. J. and Pigozzi, D.: Algebraic semantics for universal Horn logic without equality, in A. Romanowska and J. D. H. Smith (eds.), Universal Algebra and Quasigroup Theory, Heldermann Verlag, Berlin, 1992.
Borceux, F.: Handbook of Categorical Algebra, Encyclopedia Math. Appl. 50, Cambridge University Press, Cambridge, U.K., 1994.
Czelakowski, J.: Equivalential logics I, II, Studia Logica 40 (1981), 227–236, 355–372.
Czelakowski, J.: Protoalgebraic Logics, Studia Logica Library 10, Kluwer, Dordrecht, 2001.
Diaconescu, R.: Grothendieck institutions, Appl. Categ. Structures 10(4) (2002), 383–402.
Diaconescu, R.: Institution-independent ultraproducts, Fund. Inform. 55(3–4) (2002), 321–348.
Diaconescu, R.: An institution-independent proof of the Craig interpolation property, Studia Logica 77(1) (2004), 59–79.
Fiadeiro, J. and Sernadas, A.: Structuring theories on consequence, in D. Sannella and A. Tarlecki (eds.), Recent Trends in Data Type Specification, Lecture Notes in Comput. Sci. 332, Springer-Verlag, New York, 1988, pp. 44–72.
Font, J. M. and Jansana, R.: A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic 7, Springer-Verlag, Berlin, 1996.
Font, J. M., Jansana, R. and Pigozzi, D.: A survey of abstract algebraic logic, Studia Logica 74(1/2) (2003), 13–97.
Goguen, J. A. and Burstall, R. M.: Introducing institutions, in E. Clarke and D. Kozen (eds.), Proceedings of the Logic of Programming Workshop, Lecture Notes in Comput. Sci. 164, Springer-Verlag, New York, 1984, pp. 221–256.
Goguen, J. A. and Burstall, R. M.: Institutions: Abstract model theory for specification and programming, J. Assoc. Comput. Mach. 39(1) (1992), 95–146.
Herrmann, B.: Equivalential logics and definability of truth, Dissertation, Freie Universitat Berlin, Berlin, 1993.
Herrmann, B.: Equivalential and algebraizable logics, Studia Logica 57 (1996), 419–436.
Herrmann, B.: Characterizing equivalential and algebraizable logics by the Leibniz operator, Studia Logica 58 (1997), 305–323.
Mac Lane, S.: Categories for the Working Mathematician, Springer-Verlag, 1971.
Prucnal, T. and Wroński, A.: An algebraic characterization of the notion of structural completeness, Bull. of the Section of Logic 3 (1974), 30–33.
Voutsadakis, G.: Categorical abstract algebraic logic, Doctoral Dissertation, Iowa State University, Ames, Iowa, 1998.
Voutsadakis, G.: Categorical abstract algebraic logic: Algebraizable institutions, Appl. Categ. Structures 10(6) (2002), 531–568.
Voutsadakis, G.: Categorical abstract algebraic logic: Equivalent institutions, Studia Logica 74(1/2) (2003), 275–311.
Voutsadakis, G.: A categorical construction of a variety of clone algebras, Sci. Math. Japon. 8 (2003), 215–225.
Voutsadakis, G.: On the categorical algebras of first-order logic, Sci. Math. Japon. 10 (2004), 47–54.
Voutsadakis, G.: Categorical abstract algebraic logic: Categorical algebraization of equational logic, Logic J. IGPL 12(4) (2004), 313–333.
Voutsadakis, G.: Categorical abstract algebraic logic: Categorical algebraization of first-order logic without terms, To appear in the Arch. Math. Logic, Preprint available at http://pigozzi.lssu.edu/WWW/research/papers.html
Voutsadakis, G.: Categorical abstract algebraic logic: Tarski congruence systems, logical morphisms and logical quotients, Submitted to the Ann. Pure Appl. Logic, Preprint available at http://pigozzi.lssu.edu/WWW/research/papers.html
Voutsadakis, G.: Categorical abstract algebraic logic: Models of π-institutions, To appear in the Notre Dame J. Formal Logic, Preprint available at http://pigozzi.lssu.edu/WWW/research/papers.html
Voutsadakis, G.: Categorical abstract algebraic logic: Generalized Tarski congruence systems, Submitted to Theory and Applications of Categories, Preprint available at http://pigozzi.lssu.edu/WWW/research/papers.html
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classifications (2000)
Primary: 03Gxx, secondary: 18Axx, 68N05.
Rights and permissions
About this article
Cite this article
Voutsadakis, G. Categorical Abstract Algebraic Logic: (ℐ,N)-Algebraic Systems. Appl Categor Struct 13, 265–280 (2005). https://doi.org/10.1007/s10485-005-5797-5
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10485-005-5797-5