UAV routing by simulation-based optimization approaches for forest fire risk mitigation | Annals of Operations Research Skip to main content
Log in

UAV routing by simulation-based optimization approaches for forest fire risk mitigation

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The magnitude of the recent forest fires, the time required to extinguish them, and the damage they caused have attracted the attention of all humanity. If the current trend continues, it will cause great irreversible losses. There is a great need for scientific studies to prevent or reduce the damages of these fires. In this context, this paper proposes algorithms and mathematical models for generating the routes of unmanned aerial vehicles to detect forest fires that may occur especially in regions far from residential areas. A novel heuristic dispatching rule and a simulation-based optimization algorithm are proposed. The striking features of the proposed algorithms are that the routes are created with a focus on minimizing the fire probabilities. The uncertainties and dynamics of real-life are also considered. Various scenarios have experimented on a realistic case. Experimental results and findings are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akkas, M. E., Bucak, C., Boza, Z., Eronat, H., Bekereci, A., Erkan, A., & Cebeci, C. (2008). The investigation of the great wild fires based on meteorological data. Ege Forestry Research Institute: Technical report

  • Alkhatib, A. A. A. (2014). A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, 10(3), 1–12. https://doi.org/10.1155/2014/597368.

    Article  Google Scholar 

  • Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2014). Simulation optimization: A review of algorithms and applications. 4OR: A Quarterly Journal of Operations Research, 12, 301–333. https://doi.org/10.1007/s10288-014-0275-2.

    Article  Google Scholar 

  • Ambrosia, V. G., Wegener, S., Zajkowski, T., Sullivan, D. V., Buechel, S., Enomoto, F., et al. (2011). The ikhana unmanned airborne system (uas) western states fire imaging missions: From concept to reality (2006–2010). Geocarto International, 26(2), 85–101. https://doi.org/10.1080/10106049.2010.539302.

    Article  Google Scholar 

  • Bradley, J. M., & Taylor, C. N. (2011). Georeferenced mosaics for tracking fires using unmanned miniature air vehicles. Journal of Aerospace Computing, Information and Communication, 8(10), 295–309. https://doi.org/10.2514/1.45342.

    Article  Google Scholar 

  • Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering, 99, 300–313. https://doi.org/10.1016/j.cie.2015.12.007.

    Article  Google Scholar 

  • Brown, B., Wei, W., Ozburn, R., Kumar, M., & Cohen, K. (2015). Surveillance for intelligent emergency response robotic aircraft–vtol aircraft for emergency response. In AIAA Infotech @ Aerospace (pp. 1–8).

  • Casbeer, D. W., Kingston, D. B., Beard, R. W., & McLain, T. W. (2006). Cooperative forest fire surveillance using a team of small unmanned air vehicles. International Journal of Systems Science, 37(6), 351–360. https://doi.org/10.1080/00207720500438480.

    Article  Google Scholar 

  • Coutinho, W. P., Battarra, M., & Fliege, J. (2018). The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review. Computers & Industrial Engineering, 120, 116–128. https://doi.org/10.1016/j.cie.2018.04.037.

    Article  Google Scholar 

  • Cruz, H., Eckert, M., Meneses, J., & Martinez, J.-F. (2016). Efficient forest fire detection index for application in unmanned aerial systems (uass). Sensors, 16(6:893), 1–16. https://doi.org/10.3390/s16060893.

    Article  Google Scholar 

  • Martinez-de Dios, J. R., Merino, L., Caballero, F., Ollero, A., & Viegas, D. X. (2006). Experimental results of automatic fire detection and monitoring with uavs. Forest Ecology and Management, 234S, 232. https://doi.org/10.1016/j.foreco.2006.08.259.

    Article  Google Scholar 

  • Martinez-de Dios, J. R., Merino, L., Caballero, F., & Ollero, A. (2011). Automatic forest-fire measuring using ground stations and unmanned aerial systems. Sensors, 11, 6328–6353. https://doi.org/10.3390/s110606328.

    Article  Google Scholar 

  • Erdelj, M., Krol, M., & Natalizio, E. (2017). Wireless sensor networks and multi-uav systems for natural disaster management. Computer Networks, 124, 72–86. https://doi.org/10.1016/j.comnet.2017.05.021.

    Article  Google Scholar 

  • Evers, L., Dollevoet, T., Barros, A. I., & Monsuur, H. (2014). Robust uav mission planning. Annals of Operations Research, 222, 293–315. https://doi.org/10.1007/s10479-012-1261-8.

    Article  Google Scholar 

  • Gabrel, V., Murat, C., & Wu, L. (2013). New models for the robust shortest path problem: Complexity, resolution and generalization. Annals of Operations Research, 207, 97–120. https://doi.org/10.1007/s10479-011-1004-2.

    Article  Google Scholar 

  • Ghamry, K. A., & Zhang, Y. (2016). Fault-tolerant cooperative control of multiple uavs for forest fire detection and tracking mission. In 3rd conference on control and fault-tolerant systems (SysTol) (pp. 133–138), IEEE.

  • Ghamry, K. A., Kamel, M. A., & Zhang, Y. (2016). Cooperative forest monitoring and fire detection using a team of uavs-ugvs. In International conference on unmanned aircraft systems (ICUAS) (pp. 1206–1211), IEEE.

  • Giitsidis, T., Karakasis, E. G., Gasteratos, A., & Sirakoulis, G. C. (2015). Human and fire detection from high altitude uav images. In 23rd Euromicro international conference on parallel, distributed, and network-based processing (pp. 309–315), IEEE.

  • Halat, M., & Ozkan, O. (2021). The optimization of uav routing problem with a genetic algorithm to observe the damages of possible Istanbul earthquake. Pamukkale University Journal of Engineering Sciences, 27(2), 181–191. https://doi.org/10.5505/pajes.2020.75725.

    Article  Google Scholar 

  • Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131. https://doi.org/10.1016/j.paerosci.2017.04.003.

    Article  Google Scholar 

  • Ianovsky, E., & Kreimer, J. (2011). An optimal routing policy for unmanned aerial vehicles (analytical and cross-entropy simulation approach). Annals of Operations Research, 189, 215–253. https://doi.org/10.1007/s10479-009-0609-1.

    Article  Google Scholar 

  • Jeffries, E., & Perry, C. (2020). Fires, forests and the future: a crisis raging out of control? Technical report, World Wide Fund for Nature, Boston Consulting Group.

  • Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62–72. https://doi.org/10.1016/j.orp.2015.03.001.

    Article  Google Scholar 

  • Karma, S., Zorba, E., Pallis, G. C., Statheropoulos, G., Balta, I., Mikedi, K., et al. (2015). Use of unmanned vehicles in search and rescue operations in forest fires: Advantages and limitations observed in a field trial. International Journal of Disaster Risk Reduction, 13, 307–312. https://doi.org/10.1016/j.ijdrr.2015.07.009.

    Article  Google Scholar 

  • Kilic, S., & Ozkan, O. (2019). A self-adaptive uav routing for forest fire risk mitigation: A conceptual model. In Proceedings of the 2019 summer simulation conference, society for modeling and simulation international (SCS) (pp. 1–12), https://dl.acm.org/doi/10.5555/3374138.3374173.

  • Kumar, M., Cohen, K., & HomChaudhuri, B. (2011). Cooperative control of multiple uninhabited aerial vehicles for monitoring and fighting wildfires. Journal of Aerospace Computing, Information and Communication, 8(1), 1–16. https://doi.org/10.2514/1.48403.

    Article  Google Scholar 

  • Laporte, G., & Osman, I. H. (1995). Routing problems: A bibliography. Annals of Operations Research, 61, 227–262. https://doi.org/10.1007/BF02098290.

    Article  Google Scholar 

  • Laszlo, B., Agoston, R., & Xu, Q. (2018). Conceptual approach of measuring the professional and economic effectiveness of drone applications supporting forest fire management. Procedia Engineering, 211, 8–17. https://doi.org/10.1016/j.proeng.2017.12.132.

    Article  Google Scholar 

  • Ma, S., Zhang, Y., Xin, J., Yi, Y., Liu, D., & Liu, H. (2018). An early forest fire detection method based on unmanned aerial vehicle vision. In The 30th Chinese control and decision conference (CCDC) (pp. 6344–6349), IEEE.

  • Maza, I., Caballero, F., Capitan, J., Martinez-de Dios, J. R., & Ollero, A. (2011). Experimental results in multi-uav coordination for disaster management and civil security applications. Journal of Intelligent & Robotic Systems, 61, 563–585. https://doi.org/10.1007/s10846-010-9497-5.

    Article  Google Scholar 

  • Mazzuco, D. E., Carreirao Danielli, A. M., Oliveira, D. L., Santos, P. P. P., Pereira, M. M., Coelho, L. C., & Frazzon, E. M. (2018). A concept for simulation-based optimization in vehicle routing problems. IFAC-PapersOnLine, 51(11), 1720–1725. https://doi.org/10.1016/j.ifacol.2018.08.208.

    Article  Google Scholar 

  • Merino, L., Caballero, F., Martinez-de Dios, J. R., Ferruz, J., & Ollero, A. (2006). A cooperative perception system for multiple uavs: Application to automatic detection of forest fires. Journal of Field Robotics, 23(3/4), 165–184. https://doi.org/10.1002/rob.20108.

    Article  Google Scholar 

  • Merino, L., Caballero, F., Martinez-de Dios, J. R., Maza, I., & Ollero, A. (2012). An unmanned aircraft system for automatic forest fire monitoring and measurement. Journal of Intelligent & Robotic Systems, 65, 533–548. https://doi.org/10.1007/s10846-011-9560-x.

    Article  Google Scholar 

  • Nasa. (2020). Longer, more frequent fire seasons. https://earthobservatory.nasa.gov/images/86268/longer-more-frequent-fire-seasons. Accessed 28 January 2020.

  • Oliva, D., Copado, P., Hinojosa, S., Panadero, J., Riera, D., & Juan, A. A. (2020). Fuzzy simheuristics: Solving optimization problems under stochastic and uncertainty scenarios. Mathematics, 8(2240), 1–19. https://doi.org/10.3390/math8122240.

    Article  Google Scholar 

  • Otero, V., Van De Kerchove, R., Satyanarayana, B., Martinez-Espinosa, C., Amir Bin Fisol, M., Rodila Bin Ibrahim, M., et al. (2018). Managing mangrove forests from the sky: Forest inventory using field data and unmanned aerial vehicle (uav) imagery in the matang mangrove forest reserve, peninsular malaysia. Forest Ecology and Management, 411, 35–45. https://doi.org/10.1016/j.foreco.2017.12.049.

    Article  Google Scholar 

  • Pan, Y., Yan, L., Chen, Z., & Zhou, M. (2013). Simulation-based optimization for split delivery vehicle routing problem: A report of ongoing study. In Proceedings of the 2013 winter simulation conference (pp. 1089–1096), IEEE. https://doi.org/10.1109/WSC.2013.6721498.

  • Panadero, J., Juan, A. A., Freixes, A., Serrat, C., Grifoll, M., & Dehghanimohamamdabadi, M. (2019). A simheuristic for the unmanned aerial vehicle surveillance-routing problem with stochastic traveltimes and reliability considerations. In Winter simulation conference (pp. 1883–1893), IEEE. https://doi.org/10.1109/WSC40007.2019.9004655.

  • Panadero, J., Juan, A. A., Bayliss, C., & Currie, C. (2020). Maximizing reward from a team of surveillance drones: A simheuristic approach to the stochastic team orienteering problem. European Journal of Industrial Engineering, 14(4), 485–516. https://doi.org/10.1504/EJIE.2020.108581.

    Article  Google Scholar 

  • Pastor, E., Barrado, C., Royo, P., Santamaria, E., Lopez, J., & Salami, E. (2011). Architecture for a helicopter-based unmanned aerial systems wildfire surveillance system. Geocarto International, 26(2), 113–131. https://doi.org/10.1080/10106049.2010.531769.

    Article  Google Scholar 

  • Sun, H., Song, G., Wei, Z., Zhang, Y., & Liu, S. (2017). Bilateral teleoperation of an unmanned aerial vehicle for forest fire detection. In Proceedings of the 2017 international conference on information and automation (ICIA) (pp. 586–591), IEEE.

  • Tedim, F., Xanthopoulos, G., & Leone, V. (2015). Forest fires in Europe: Facts and challenges. In D. Paton & J. F. Shroder (Eds.), Wildfire hazards, risks and disasters (pp. 77–99). NY: Elsevier.

    Chapter  Google Scholar 

  • Tekin, E., & Sabuncuoglu, I. (2004). Simulation optimization: A comprehensive review on theory and applications. IIE Transactions, 36(11), 1067–1081. https://doi.org/10.1080/07408170490500654.

    Article  Google Scholar 

  • Wang, Z., & Lin, L. (2013). A simulation-based algorithm for the capacitated vehicle routing problem with stochastic travel times. Journal of Applied Mathematics, 2013(127156), 1–10. https://doi.org/10.1155/2013/127156.

    Article  Google Scholar 

  • Wu, L., Hifi, M., & Bederina, H. (2017). A new robust criterion for the vehicle routing problem with uncertain travel time. Computers & Industrial Engineering, 112, 607–615. https://doi.org/10.1016/j.cie.2017.05.029.

    Article  Google Scholar 

  • Yuan, C., Zhang, Y., & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring, detection and fighting using uavs and remote sensing techniques. Canadian Journal of Forest Research, 45(7), 783–792. https://doi.org/10.1139/cjfr-2014-0347.

    Article  Google Scholar 

  • Yuan, C., Ghamry, K. A., Liu, Z., & Zhang, Y. (2016a). Unmanned aerial vehicle based forest fire monitoring and detection using image processing technique. In Proceedings of IEEE Chinese guidance, navigation and control conference (pp. 1870–1875), IEEE.

  • Yuan, C., Liu, Z., & Zhang, Y. (2016b). Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles. Journal of Intelligent and Robotic Systems, 88, 635–654. https://doi.org/10.1007/s10846-016-0464-7.

    Article  Google Scholar 

  • Yuan, C., Liu, Z., & Zhang, Y. (2017a). Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles. Journal of Intelligent & Robotic Systems, 88, 635–654. https://doi.org/10.1007/s10846-016-0464-7.

    Article  Google Scholar 

  • Yuan, C., Liu, Z., & Zhang, Y. (2017b). Fire detection using infrared images for uav-based forest fire surveillance. In International conference on unmanned aircraft systems (ICUAS) (pp. 567–572), IEEE.

  • Zhao, Y., Zheng, Z., & Liu, Y. (2018). Survey on computational-intelligence-based uav path planning. Knowledge-Based Systems, 158, 54–64. https://doi.org/10.1016/j.knosys.2018.05.033.

    Article  Google Scholar 

  • Zhou, G., Li, C., & Cheng, P. (2005). Unmanned aerial vehicle (uav) real-time video registration for forest fire monitoring. In Proceedings of IEEE international geoscience and remote sensing symposium (IGARSS’05) (pp. 1803–1806), https://doi.org/10.1109/IGARSS.2005.1526355.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Ozkan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, O., Kilic, S. UAV routing by simulation-based optimization approaches for forest fire risk mitigation. Ann Oper Res 320, 937–973 (2023). https://doi.org/10.1007/s10479-021-04393-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04393-6

Keywords

Navigation