Intervene in advance or passively? Analysis and application on congestion control of smart grid | Annals of Operations Research Skip to main content
Log in

Intervene in advance or passively? Analysis and application on congestion control of smart grid

  • Short Note
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper models a frequently encountered problem regarding optimal control and queuing. When the arriving and leaving of queuer are predicted, congestion is forecasted, the timing of intervene and control can really improve the effectiveness. A practical case of its application in industry is for the congestion management of smart grid, designed for which, modeling and solving the relevant optimal stopping problem refine the management to be even smarter, especially for the decision of whether intervene in advance or until the congestion happens, towards an ultimate reduction of congestion time. This model has no assumption expect letting the arriving time with a period time follows a uniform distribution, and has no parameters expect the congestion threshold. This conciseness makes this study applicable for very general cases and even for similar situations in other topics, and the findings illustrate deep wisdom of management especially for queueing control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Agram, N., Bachouch, A., Oksendal, B., & Proske, F. (2019). Singular control optimal stopping of memory mean-field processes. SIAM Journal on Mathematical Analysis, 40(1), 450–469.

    Article  Google Scholar 

  • Bayraktar, E., Cox, A., & Stoev, Y. (2018). Martingale optimal transport with stopping. SIAM Social Science Electronic Publishing, 56(1), 417–433.

    Google Scholar 

  • Bhatt, S. D., Jayaswal, S., Sinha, A., & Vidyarthi, N. (2021). Alternate second order conic program reformulations for hub location under stochastic demand and congestion. Annals of Operations Research, 304, 481–527.

    Article  Google Scholar 

  • Bjorndal, E., Bjorndal, M., Midthun, K., & Zakeri, G. (2016). Congestion management in a stochastic dispatch model for electricity markets. SSRNElectronic Journal, 2829365.

  • Bréchet, T., Camacho, C., & Veliov, V. M. (2014). Model predictive control, the economy, and the issue of global warming. Annals of Operations Research, 220, 25–48.

    Article  Google Scholar 

  • Darroch, J. N., & Morris, K. W. (1968). Passage-time generating functions for continuous-time finite Markov chains. Journal of Applied Probability, 5(2), 414–426.

    Article  Google Scholar 

  • du Toit, J., & Peskir, G. (2009). Selling a stock at the ultimate maximum. The Annals of Applied Probability, 19(3), 983–1014.

    Google Scholar 

  • Esfahani, M. M., & Yousefi, G. R. (2016). Real time congestion management in power systems considering quasi-dynamic thermal rating and congestion clearing time. IEEE Transactions on Industrial Informatics, 12(2), 745–754.

    Article  Google Scholar 

  • Fang, R. S., & David, A. K. (1999). Transmission congestion management in an electricity market. IEEE Transactions on Power Systems, 14(3), 877–883.

    Article  Google Scholar 

  • Ferrari, G. (2018). On the optimal management of public debt: A singular stochastic control problem. SIAM Journal on Control and Optimization, 56(3), 2036–2073.

    Article  Google Scholar 

  • Galus, M. D., Zima, M., & Andersson, G. (2010). On integration of plug-in hybrid electric vehicles into existing power system structures. Energy Policy, 38(11), 6736–6745.

    Article  Google Scholar 

  • Giselsson, P., & Rantzer, A. (2014). On feasibility, stability and performance in distributed model predictive control. IEEE Transactions on Automatic Control, 59(4), 1031–1036.

    Article  Google Scholar 

  • Hadush, S. Y., & Meeus, L. (2018). DSO-TSO cooperation issues and solutions for distribution grid congestion management. Energy Policy, 120, 610–621.

    Article  Google Scholar 

  • Heidergott, B., Leahu, H., L\(\ddot{o}\)pker, A., & Pflug, G. (2016). Perturbation analysis of inhomogeneous finite Markov chains. Advances in Applied Probability, 48(1): 255-273

  • Hemmati, R., Saboori, H., & Jirdehi, M. A. (2017). Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resource. Energy, 133(15), 380–387.

    Article  Google Scholar 

  • Huang, S. J., & Wu, Q. W. (2017). Real-time congestion management in distribution networks by flexible demand swap. IEEE Transactions on Smart Grid, 9(5), 4346–4355.

    Article  Google Scholar 

  • Kalogeropoulos, I., & Sarimveis, H. (2020). Predictive control algorithms for congestion management in electric power distribution grids. Applied Mathematical Modelling, 77, 635–651.

    Article  Google Scholar 

  • Lampropoulos, I., Baghina, N., Kling, W. L., & Ribeiro, P. F. (2013). A predictive control scheme for real-time demand response applications. IEEE Transactions on Smart Grid, 4(4), 2049–2060.

    Article  Google Scholar 

  • Liu, Y., & Privault, N. (2018). A recursive algorithm for selling at the ultimate maximum in regime-switching models. Methodology and Computing in Applied Probability, 20(1), 369–384.

    Article  Google Scholar 

  • Liu, Y., Yang, A. J., Zhang, J. J., & Yao, J. J. (2020). An optimal stopping problem of detecting entry points for trading modeled by geometric Brownian motion. Computational Economics, 55(3), 827–843.

    Article  Google Scholar 

  • Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36, 789–814.

    Article  Google Scholar 

  • Nutz, M. (2018). A mean field game of optimal stopping. SIAM Journal on Control and Optimization, 56(2), 1206–1221.

    Article  Google Scholar 

  • Parisio, A., Rikos, E., & Glielmo, L. (2014). A model predictive control approach to microgrid operation optimization. IEEE Transactions on Control Systems Technology, 22(5), 1813–1827.

    Article  Google Scholar 

  • Pedler, P. J. (1971). Occupation times for two state Markov chains. Journal of Applied Probability, 8, 381–390.

    Article  Google Scholar 

  • Peskir, G. (2019). Optimal stopping times. General theory for the discrete-time case. The Annals of Applied Probability, 29(1), 505–530.

    Google Scholar 

  • Peskir, G., & Shiryaev, A. (2006). Optimal stopping and free-boundary problems. In: Lectures in mathematics. ETH Zürich, Birkhäuser.

  • Privault, N. (2013). Understanding Markov chains—Examples and applications. In Springer undergraduate mathematics series.

  • Reddy, S. S. (2017). Multi-objective based congestion management using generation rescheduling and load shedding. IEEE Transactions on Power Systems, 32(2), 852–863.

    Google Scholar 

  • Romero-Ruiz, J., Prez-Ruiz, J., Martin, S., Aguado, J. A., & De la Torre, S. (2016). Probabilistic congestion management using EVs in a smart grid with intermittent renewable generation. Electric Power Systems Research, 137, 155–162.

    Article  Google Scholar 

  • Roy, D., Krishnamurthy, A., Heragu, S., & Malmborg, C. (2015). Stochastic models for unit-load operations in warehouse systems with autonomous vehicles. Annals of Operations Research, 231, 129C155.

    Article  Google Scholar 

  • Shiryaev, A. N. (1978). Optimal stopping rules. Springer.

  • Singh, H., Hao, S., & Papalexopoulos, A. (1998). Transmission congestion management in competitive electricity markets. IEEE Transactions on Power Systems, 13(2), 672–680.

    Article  Google Scholar 

  • Venkat, A. N., Hiskens, I. A., Rawlings, J. B., & Wright, S. J. (2006). Distributed output feedback MPC for power system control. In Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, USA, pp. 4038–4045

  • Venkat, A. N., Hiskens, I. A., Rawlings, J. B., & Wright, S. J. (2008). Distributed MPC strategies with application to power system automatic generation control. IEEE Transactions on Control Systems Technology, 16, 1192–1206.

    Article  Google Scholar 

  • Wu, J., Zhang, B., Jiang, Y. Z., Bie, P., & Li, H. (2019). Chance-constrained stochastic congestion management of power systems considering uncertainty of wind power and demand side response. International Journal of Electrical Power & Energy Systems, 107, 703–714.

    Article  Google Scholar 

  • Yuan, Z., & Hesamzadeh, M. R. (2017). Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources. Applied Energy, 195, 600–615.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the anonymous referees and the editors for many valuable comments and suggestions, which have led to a much improved version of the paper. This work is partly supported by the grant from National Natural Science Foundation of China (72004082,71673117); Jiangsu Natural Science Foundation (BK20180852); Jiangsu university philosophy and social science research project (2020SJA2052), Jiangsu postdoctoral research foundation (90784).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Appendices

Appendix A: Expression of function H

For the function H defined by (3.1) that

$$\begin{aligned} H^n(t,i,j):=\mathop {\hbox \mathrm{IE}}\nolimits \left[ \int _t^{t+T/n}\mathbf{1}_{(N_s\ge K)ds}\,|\,N_t=i,F_t=j\right] , \end{aligned}$$

we have its expression as follows,

  1. (1)

    \(i<K-1\): \(H^n(t,i,j)=0\).

  2. (2)
    1. a)

      \(i=K-1\): \(H^n(t,K-1,n-K+1)=0\);

    2. b)

      \(j<n-k+1\):

      $$\begin{aligned} H^n(t,k-1,j)=\frac{(n-k+1-j)(\exp (-A_1T/n)+A_1T/n-1)}{(T-t)A_1^2}, \end{aligned}$$

      where \(A_1:=(K-1)/t+(n-K+1-j)/(T-t)\).

  3. (3)

    \(i=K\):

    $$\begin{aligned} H^n(t,K,j)=&\frac{T}{n}\left( e^{-B_1{T}/{n}}+\frac{(1-\exp (-B_1T/n))(n-K-j)}{(T-t)T/n}\right) \\&+\frac{(1-\exp (-B_1T/n)(B_1T/n+1))K}{tB_1^2}, \end{aligned}$$

    where \(B_1:=K/t+(n-K-j)/(T-t)\).

  4. (4)

    \(i\le K+1\): \(H^n(t,i,j)=t+O({1}/{n^2})\).

Appendix B: Expression of function G

Here we proceed to prove the Proposition 3.2. Given \(r\in [0,T]\), \((i,j)\in {{\mathcal {M}}}_2\), \(N_r=i\), \(F_r=j\), denote by p(rijsm) the probability of the event \(N_s=m\) for any \(s\in (r,T]\) and \(m\in {{\mathcal {M}}}\). Hence \(P(N_s\ge K\,|\,N_r=i,F_r=j)=\sum _{m=K}^{n-j}p(r,i,j,s,m)\) and

$$\begin{aligned}&p(r,i,j,s,m)=P(N_s=m\,|\,N_r=i,F_r=j)\nonumber \\&\quad =\sum _{\begin{array}{c} d_1\ge 0\vee i-m\\ d_1\le i\wedge (n-j-m) \end{array}} \left( {\begin{array}{c}d_1\\ i\end{array}}\right) \frac{(s-r\vee L)^{d_1}(r-s+r\vee L)^{i-d_1}}{r^i}\nonumber \\&\qquad \left( {\begin{array}{c}d_2\\ n-i-j\end{array}}\right) \frac{(L\vee (s-r))^{d_2}(T-r-L\vee (s-r))^{n-i-j-d_2}}{(T-r)^{n-i-j}}\,\Big |_{d_2=d_1+m-i}\nonumber \\&\quad =\sum _{\begin{array}{c} d_1\ge 0\vee i-m\\ d_1\le i\wedge (n-j-m) \end{array}} \left( {\begin{array}{c}d_1\\ i\end{array}}\right) \frac{(s-r\vee L)^{d_1}(r-s+r\vee L)^{i-d_1}}{r^i}\nonumber \\&\qquad \left( {\begin{array}{c}d_1+m-i\\ n-i-j\end{array}}\right) \frac{(L\vee (s-r))^{d_1+m-i}(T-r-L\vee (s-r))^{n-j-d_1-m}}{(T-r)^{n-i-j}}. \end{aligned}$$
(5.1)

By definition (2.4) of G, and use the notation that \(\hat{t}=(t+\eta )\wedge T\), we express the function G as follows,

$$\begin{aligned} G(t,i,j)&=\mathop {\hbox \mathrm{IE}}\nolimits \left[ {{\hat{t}}}-t+\int _{{\hat{t}}}^T\mathbf{1}_{(N^*_s(\hat{t}, N_t-F_{\hat{t}}+F_t, F_{\hat{t}})\ge K)}ds\,\Big |\,N_t=i,F_t=j\right] \\&\quad ={{\hat{t}}}-t+\sum \limits _{r=0}^{(n-j)\wedge i}\mathop {\hbox \mathrm{IE}}\nolimits \left[ \int _{{\hat{t}}}^T\mathbf{1}_{(N^*_s(\hat{t}, i-r, j+r)\ge K)}ds\right] \left( {\begin{array}{c}i\\ r\end{array}}\right) \\&\qquad \frac{({{\hat{t}}}-t\vee L)^r(t-{{\hat{t}}}+t\vee L)^{i-r}}{t^r}\\&\quad ={{\hat{t}}}-t+\sum \limits _{r=0}^{(n-j)\wedge i}\int _{{\hat{t}}}^TP(N_s\ge K\,|\,N_{{\hat{t}}}=i-r,F_{{\hat{t}}}=j+r)ds\left( {\begin{array}{c}i\\ r\end{array}}\right) \\&\qquad \frac{({{\hat{t}}}-t\vee L)^r(t-{{\hat{t}}}+t\vee L)^{i-r}}{t^r}\\&\quad ={{\hat{t}}}-t+\sum \limits _{r=0}^{(n-j)\wedge i}\int _{{\hat{t}}}^T\sum _{m=K}^{n-j}p({{\hat{t}}},i-r,j+r,s,m)ds\\&\qquad \left( {\begin{array}{c}i\\ r\end{array}}\right) \frac{({{\hat{t}}}-t\vee L)^r(t-{{\hat{t}}}+t\vee L)^{i-r}}{t^r}. \end{aligned}$$

Hence we complete the proof of Proposition 3.2.

Appendix C: Pseudo code of the algorithm

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, J., Ding, X. et al. Intervene in advance or passively? Analysis and application on congestion control of smart grid. Ann Oper Res 320, 887–899 (2023). https://doi.org/10.1007/s10479-021-04389-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04389-2

Keywords