Dutch book rationality conditions for conditional preferences under ambiguity | Annals of Operations Research Skip to main content
Log in

Dutch book rationality conditions for conditional preferences under ambiguity

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We study preference relations on conditional gambles of a decision maker acting under ambiguity. Dutch book rationality conditions are provided under a linear utility scale, encoding either an optimistic or a pessimistic attitude towards uncertainty. These conditions characterize possibly incomplete preferences representable by totally alternating or monotone conditional functionals. In general, the uniqueness of the representation is not guaranteed, but it can be obtained by adding the hypothesis of existence of a conditional fair price for every conditional gamble. The given rationality conditions have a betting scheme interpretation relying on “penalty fees” for betting on strict preference comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caldari, L., Coletti, G., Petturiti, D., & Vantaggi, B. (2016). Preferences on gambles representable by a choquet expected value with respect to conditional belief and plausibility functions. In J. Carvalho, M.-J. Lesot, U. Kaymak, S. Vieira, B. Bouchon-Meunier, & R. Yager (Eds.), Information processing and management of uncertainty in knowledge-based systems (pp. 569–580). Cham: Springer.

    Chapter  Google Scholar 

  • Capotorti, A., Coletti, G., & Vantaggi, B. (2014). Standard and nonstandard representability of positive uncertainty orderings. Kybernetika, 50(2), 189–215.

    Google Scholar 

  • Chateauneuf, A. (1991). On the use of capacities in modeling uncertainty aversion and risk aversion. Journal of Mathematical Economics, 20(4), 343–369.

    Article  Google Scholar 

  • Chateauneuf, A. (1994). Modeling attitudes towards uncertainty and risk through the use of choquet integral. Annals of Operations Research, 52(1), 1–20.

    Article  Google Scholar 

  • Chateauneuf, A., & Jaffray, J. Y. (1989). Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical Social Sciences, 17(3), 263–283.

    Article  Google Scholar 

  • Chateauneuf, A., Kast, R., & Lapied, A. (2001). Conditioning capacities and choquet integrals: The role of comonotony. Theory and Decision, 51(2), 367–386.

    Article  Google Scholar 

  • Coletti, G. (1990). Coherent qualitative probability. Journal of Mathematical Psychology, 34(3), 297–310.

    Article  Google Scholar 

  • Coletti, G., Petturiti, D., & Vantaggi, B. (2016). Conditional belief functions as lower envelopes of conditional probabilities in a finite setting. Information Sciences, 339, 64–84.

    Article  Google Scholar 

  • Coletti, G., Petturiti, D., & Vantaggi, B. (2018). Conditional submodular coherent risk measures. In J. Medina, M. Ojeda-Aciego, J. Verdegay, D. Pelta, I. Cabrera, B. Bouchon-Meunier, & R. Yager (Eds.), Information processing and management of uncertainty in knowledge-based systems. Theory and foundations (pp. 239–250). Berlin: Springer.

    Chapter  Google Scholar 

  • Coletti, G., Petturiti, D., & Vantaggi, B. (2019). Models for pessimistic or optimistic decisions under different uncertain scenarios. International Journal of Approximate Reasoning, 105, 305–326.

    Article  Google Scholar 

  • Coletti, G., & Scozzafava, R. (2001). From conditional events to conditional measures: A new axiomatic approach. Annals of Mathematics and Artificial Intelligence, 32(1), 373–392.

    Article  Google Scholar 

  • Coletti, G., & Scozzafava, R. (2002). Probabilistic logic in a coherent setting, trends in logic (Vol. 15). Dordrecht: Kluwer.

    Book  Google Scholar 

  • Coletti, G., & Scozzafava, R. (2006). Toward a general theory of conditional beliefs. International Journal of Intelligent Systems, 21(3), 229–259.

    Article  Google Scholar 

  • Coletti, G., Scozzafava, R., & Vantaggi, B. (2013). Inferential processes leading to possibility and necessity. Information Sciences, 245, 132–145.

    Article  Google Scholar 

  • Coletti, G., & Vantaggi, B. (2008). A view on conditional measures through local representability of binary relations. International Journal of Approximate Reasoning, 47(3), 268–283.

    Article  Google Scholar 

  • Császár, A. (1955). Sur la structure des espaces de probabilité conditionnelle. Acta Mathematica Academiae Scientiarum Hungarica, 6(3), 337–361.

    Article  Google Scholar 

  • de Finetti, B. (1937). La prèvision: Ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincarè, 7, 1–68.

    Google Scholar 

  • de Finetti, B. (1949). Sull’impostazione assiomatica del calcolo delle probabilità. Annali Triestini, 19(2a), 29–81.

    Google Scholar 

  • de Finetti, B. (1950). Aggiunta alla nota sull’assiomatica della probabilità. Annali Triestini, 20(2a), 3–20.

    Google Scholar 

  • de Finetti, B. (1975). Theory of probability 1–2. London: Wiley.

    Google Scholar 

  • Dempster, A. (1967). Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics, 38(2), 325–339.

    Article  Google Scholar 

  • Denneberg, D. (1994a). Conditioning (updating) non additive measures. Annals of Operations research, 52, 21–42.

    Article  Google Scholar 

  • Denneberg, D. (1994b). Non-additive measure and integral, theory and decision library: Series B (Vol. 27). Dordrecht: Kluwer.

    Book  Google Scholar 

  • Diecidue, E., & Maccheroni, F. (2003). Coherence without additivity. Journal of Mathematical Psychology, 47(2), 166–170.

    Article  Google Scholar 

  • Diecidue, E., & Wakker, P. (2002). Dutch books: Avoiding strategic and dynamic complications, and a comonotonic extension. Mathematical Social Sciences, 43(2), 135–149.

    Article  Google Scholar 

  • Dominiak, A. (2013). Iterated Choquet expectations: A possibility result. Economics Letters, 120(2), 155–159.

    Article  Google Scholar 

  • Driouchi, T., Trigeorgis, L., & So, R. (2018). Option implied ambiguity and its information content: Evidence from the subprime crisis. Annals of Operations Research, 262(2), 463–491.

    Article  Google Scholar 

  • Dubins, L. (1975). Finitely additive conditional probabilities, conglomerability and disintegrations. The Annals of Probability, 3(1), 89–99.

    Article  Google Scholar 

  • Eichberger, J., Grant, S., & Kelsey, D. (2007). Updating choquet beliefs. Journal of Mathematical Economics, 43(7), 888–899.

    Article  Google Scholar 

  • Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75(4), 643–669.

    Article  Google Scholar 

  • Epstein, L., & Breton, M. L. (1993). Dynamically consistent beliefs must be bayesian. Journal of Economic Theory, 61(1), 1–22.

    Article  Google Scholar 

  • Epstein, L., & Schneider, M. (2003). Recursive multiple-priors. Journal of Economic Theory, 113(1), 1–31.

    Article  Google Scholar 

  • Fagin, R., & Halpern, J. (1991). Uncertainty, belief, and probability. Computational Intelligence, 7(3), 160–173.

    Article  Google Scholar 

  • Gajdos, T., Tallon, J. M., & Vergnaud, J. C. (2004). Decision making with imprecise probabilistic information. Journal of Mathematical Economics, 40(6), 647–681.

    Article  Google Scholar 

  • Ghirardato, P. (2002). Revisiting savage in a conditional world. Economic Theory, 20(1), 83–92.

    Article  Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of Mathematical Economics, 18(2), 141–153.

    Article  Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1993). Updating ambiguous beliefs. Journal of Econonomic Theory, 59, 33–49.

    Article  Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1994). Additive representations of non-additive measures and the choquet integral. Annals of Operations Research, 52(1), 43–65.

    Article  Google Scholar 

  • Grabisch, M. (2016). Set functions, games and capacities in decision making. Theory and decision library C. Berlin: Springer.

    Book  Google Scholar 

  • Grabisch, M., & Labreuche, C. (2010). On using random relations to generate upper and lower probabilities. Annals of Operational Research, 175(1), 247–286.

    Article  Google Scholar 

  • Hanany, E., & Klibanoff, P. (2007). Updating preferences with multiple priors. Theoretical Economics, 2, 261–298.

    Google Scholar 

  • Horie, M. (2006). A unified representation of conditioning rules for convex capacities. Economics Bulletin, 4(19), 1–6.

    Google Scholar 

  • Horie, M. (2013). Reexamination on updating choquet beliefs. Journal of Mathematical Economics, 49(6), 467–470.

    Article  Google Scholar 

  • Jaffray, J. Y. (1989). Linear utility theory for belief functions. Operations Research Letters, 8(2), 107–112.

    Article  Google Scholar 

  • Jaffray, J. Y. (1992). Bayesian updating and belief functions. IEEE Transactions on Systems, Man, and Cybernetics, 22(2), 1144–1552.

    Article  Google Scholar 

  • Kast, R., Lapied, A., & Toquebeuf, P. (2012). Updating Choquet capacities: A general framework. Economics Bulletin, 32(2), 1495–1503.

    Google Scholar 

  • Krauss, P. (1968). Representation of conditional probability measures on Boolean algebras. Acta Mathematica Hungarica, 19(3), 229–241.

    Article  Google Scholar 

  • Lapied, A., & Toquebeuf, P. (2013). A note on ’Re-examining the law of iterated expectations for Choquet decision makers’. Theory and Decision, 74, 439–445.

    Article  Google Scholar 

  • Mangasarian, O. (1994). Nonlinear programming. In Classics in applied mathematics, Vol. 10, SIAM.

  • Miranda, E., de Cooman, G., & Couso, I. (2005). Lower previsions induced by multi-valued mappings. Journal of Statistical Planning and Inference, 133(1), 173–197.

    Article  Google Scholar 

  • Rényi, A. (1955). On a new axiomatic theory of probability. Acta Mathematica Academiae Scientiarum Hungarica, 6(3), 285–335.

    Article  Google Scholar 

  • Riedel, F., Tallon, J. M., & Vergopoulos, V. (2018). Dynamically consistent preferences under imprecise probabilistic information. Journal of Mathematical Economics, 79, 117–124.

    Article  Google Scholar 

  • Schmeidler, D. (1986). Integral representation without additivity. Proceedings of the American Mathematical Society, 97(2), 255–261.

    Article  Google Scholar 

  • Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57(3), 571–587.

    Article  Google Scholar 

  • Shafer, G. (1976a). A mathematical theory of evidence. Princeton: Princeton University Press.

    Google Scholar 

  • Shafer, G. (1976b). A theory of statistical evidence. In W. Harper & C. Hooker (Eds.), Foundations of probability theory, statistical inference, and statistical theories of science, The University of Western Ontario series in philosophy of science (Vol. 6b, pp. 365–436). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Suppes, P., & Zanotti, M. (1977). On using random relations to generate upper and lower probabilities. Synthese, 36(4), 427–440.

    Article  Google Scholar 

  • Tallon, J. M., & Vergnaud, J. C. (2006). Knowledge, beliefs and economics. Beliefs and dynamic consistency (pp. 137–154). Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Vantaggi, B. (2010). Incomplete preferences on conditional random quantities: Representability by conditional previsions. Mathematical Social Sciences, 60(2), 104–112.

    Article  Google Scholar 

  • Wakker, P. (1998). Nonexpected utility as aversion of information. Journal of Behavioral Decision Making, 1, 169–175.

    Article  Google Scholar 

  • Walley, P. (1981). Coherent lower (and upper) probabilities. Technical report, Department of Statistics, University of Warwick.

  • Williams, P. (2007). Notes on conditional previsions. International Journal of Approximate Reasoning, 44(3), 366–383.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their very detailed and constructive suggestions. The authors are members of the INdAM-GNAMPA research group. This work was partially supported by the University of Perugia, funding of 2015 Research Projects under grant “Decisions under risk, uncertainty and imprecision”, La Sapienza University of Rome funding of 2015 under Grant C26A15Y4EZ “Numerical and probabilistic models for the management of information”, the Italian Ministry of Health under Grant J521I14001640001 “Intelligent systems helping in decisions for the early alert and the dissuasion to the use of doping”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Vantaggi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coletti, G., Petturiti, D. & Vantaggi, B. Dutch book rationality conditions for conditional preferences under ambiguity. Ann Oper Res 279, 115–150 (2019). https://doi.org/10.1007/s10479-019-03299-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03299-8

Keywords

Navigation