Scheduling an autonomous robot searching for hidden targets | Annals of Operations Research Skip to main content
Log in

Scheduling an autonomous robot searching for hidden targets

  • S.I.: CoDIT2017-Combinatorial Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The problem of searching for hidden or missing objects (called targets) by autonomous intelligent robots in an unknown environment arises in many applications, e.g., searching for and rescuing lost people after disasters in high-rise buildings, searching for fire sources and hazardous materials, etc. Until the target is found, it may cause loss or damage whose extent depends on the location of the target and the search duration. The problem is to efficiently schedule the robot’s moves so as to detect the target as soon as possible. The autonomous mobile robot has no operator on board, as it is guided and totally controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the robot which is used before an emergency evacuation of people after a disaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Benkoski, S. J., Monticino, M. G., & Weisinger, J. R. (1991). A survey of the search theory literature. Naval Research Logistics, 38, 469–494.

    Article  Google Scholar 

  • Casper, J., & Murphy, R. R. (2003). Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 33(3), 367–385.

    Article  Google Scholar 

  • Chung, T. H., & Burdick, J. W. (2012). Analysis of search decision making using probabilistic search. IEEE Transactions on Robotics, 28, 132–144.

    Article  Google Scholar 

  • De Groot, M. H. (1970). Optimal statistical decisions. New York: McGraw-Hill.

    Google Scholar 

  • De Groot, M. H. (1978). Probability and statistics (pp. 258–259). Boston: Addison-Wesley.

    Google Scholar 

  • Dell, R. F., Eagle, J. N., Martins, G. H. A., & Santos, A. G. (1996). Using multiple searchers in constrained-path, moving-target search problems. Naval Research Logistics, 43, 463–480.

    Article  Google Scholar 

  • Hsu, H.-H., Chang, J.-K., Peng, W.-J., Shih, T. K., Pai, T. W., & Man, K. L. (2018). Indoor localization and navigation using smartphone sensory data. Annals of Operations Research, 265(2), 187–204.

    Article  Google Scholar 

  • Kantor, G., Singh, S., Peterson, R., Rus, D., Das, A., Kumar, V., et al. (2006). Distributed search and rescue with robot and sensor teams. In S. Yuta, H. Asama, E. Prassler, T. Tsubouchi, & S. Thrun (Eds.), Field and service robotics (pp. 529–538). Berlin: Springer.

    Chapter  Google Scholar 

  • Kress, M., Lin, K. Y., & Szechtman, R. (2008). Optimal discrete search with imperfect specificity. Mathematical Methods of Operations Research, 68, 539–549.

    Article  Google Scholar 

  • Kriheli, B., Levner, E., & Spivak, A. (2016). Optimal search for hidden targets by unmanned aerial vehicles under imperfect inspections. American Journal of Operations Research, 6(2), 53–66.

    Article  Google Scholar 

  • Levner, E. (1994). Infinite-horizon scheduling algorithms for optimal search for hidden objects. International Transactions on Operational Research, 1, 241–250.

    Google Scholar 

  • Murphy, R. R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., et al. (2008). Search and rescue robotics. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 1151–1173). Berlin: Springer.

    Chapter  Google Scholar 

  • Ninh, A., & Pham, M. (2018). Logconcavity, twice-logconcavity and Turán-type inequalities. Annals of Operations Research. https://doi.org/10.1007/s10479-018-2923-y.

    Article  Google Scholar 

  • Rabinowitz, G., & Emmons, H. (1997). Optimal and heuristic inspection schedules for multistage production systems. IIE Transactions, 29(12), 1063–1071.

    Google Scholar 

  • Rushton, A., Oxley, J., & Croucher, P. (2000). The handbook of logistics and distribution management (pp. 107–108). London: Kogan Page.

    Google Scholar 

  • Stone, L. D. (1989). Theory of optimal search. New York: Academic Press.

    Google Scholar 

  • Tripathi, R. C. (2006). Negative binomial distribution. Encyclopedia of statistical sciences. New York: Wiley.

    Google Scholar 

  • Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the optimal searcher path problem. Operations Research, 34, 324–327.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Editor and anonymous reviewers for their very useful comments and suggestions. This research was supported in part by the Research Grants Council of Hong Kong under grant no. PolyU 152148/15E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Levner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Proof of Claim 1

Let us introduce the following additional notation:

Event Bi = {after a single inspection, the AMR’s sensors declare that location i contains the target}.

Event Ci = {location i indeed contains the target}.

In terms of these events, the location probabilities pi and the probabilities of the two types of error are expressed as follows:

$$ p_{i} = P\left( {C_{i} } \right);\quad \alpha_{i} = P\left( {B_{i} /\bar{C}_{i} } \right); \quad \beta_{i} = P\left( {\bar{B}_{i} /C_{i} } \right). $$

The probability fi that the sensor declares that location i is detected as containing the target is

$$ f_{i} = P\left( {B_{i} } \right) = P\left( {B_{i} /C_{i} } \right)P\left( {C_{i} } \right) + P(B_{i} /\bar{C}_{i} )P\left( {\bar{C}_{i} } \right) = \left( {1 - \, \beta_{i} } \right)p_{i} + \, \alpha_{i} \left( {1 - p_{i} } \right). $$

The conditional probability of the event that location i contains the target under the condition that the sensor has declared that location i contains the target in a single inspection is

$$ P\left( {C_{i} /B_{i} } \right) = \frac{{P\left( {C_{i} } \right)P\left( {B_{i} /C_{i} } \right)}}{{P\left( {C_{i} } \right)P\left( {B_{i} /C_{i} } \right) + P\left( {\bar{C}_{i} } \right)P\left( {B_{i} /\bar{C}_{i} } \right)}} = \frac{{p_{i} \cdot \left( {1 - \beta_{i} } \right)}}{{p_{i} \cdot \left( {1 - \beta_{i} } \right) + \left( {1 - p_{i} } \right)\alpha_{i} }}. $$

We need to prove that the conditional probability \( a_{{\left[ {i,h_{i} } \right]}} \) of the event that location i indeed contains the target under the condition that the sensor has declared in exactly hi steps of the sequence s that location i contains the target satisfies the following relation:

$$ a_{{\left[ {i,h_{i} } \right]}} = P\left( {C_{i} /B_{i}^{\left( 1 \right)} \cap B_{i}^{\left( 2 \right)} \cap \cdots \cap B_{i}^{{\left( {h_{i} } \right)}} } \right) = \frac{{p_{i} \cdot \left( {1 - \beta_{i} } \right)^{{h_{i} }} }}{{p_{i} \cdot \left( {1 - \beta_{i} } \right)^{{h_{i} }} + \left( {1 - p_{i} } \right)\alpha_{i}^{{h_{i} }} }}. $$

Since the sequential inspections of locations made by the robot are independent, for any pair of indices i, j \( \in \) {1,2,…,N}, we have the following equalities:

$$ \left\{ \begin{aligned} P\left( {B_{i}^{{\left( {k + 1} \right)}} /C_{i} \cap B_{j}^{\left( k \right)} } \right) = P\left( {B_{i}^{{\left( {k + 1} \right)}} /C_{i} } \right) \hfill \\ P\left( {B_{i}^{{\left( {k + 1} \right)}} /\bar{C}_{i} \cap B_{j}^{\left( k \right)} } \right) = P\left( {B_{i}^{{\left( {k + 1} \right)}} /\bar{C}_{i} } \right) \hfill \\ \end{aligned} \right.. $$

Therefore, \( a_{{\left[ {i,h_{i} } \right]}} = \frac{{P\left( {C_{i} } \right) \cdot P\left( {B_{i}^{\left( 1 \right)} \cap B_{i}^{\left( 2 \right)} \cap \cdots \cap B_{i}^{{\left( {h_{i} } \right)}} /C_{i} } \right)}}{{P\left( {B_{i}^{\left( 1 \right)} \cap B_{i}^{\left( 2 \right)} \cap \cdots \cap B_{i}^{{\left( {h_{i} } \right)}} } \right)}} = \frac{{P\left( {C_{i} } \right)\, \cdot P^{{h_{i} }} \left( {B_{i}^{\left( 1 \right)} /C_{i} } \right)}}{{P\left( {C_{i} } \right)\, \cdot P^{{h_{i} }} \left( {B_{i}^{\left( 1 \right)} /C_{i} } \right) + P\left( {\bar{C}_{i} } \right)\, \cdot P^{{h_{i} }} \left( {B_{i}^{\left( 1 \right)} /\bar{C}_{i} } \right)}} = \frac{{p_{i} \cdot \left( {1 - \beta_{i} } \right)^{{h_{i} }} }}{{p_{i} \cdot \left( {1 - \beta_{i} } \right)^{{h_{i} }} + \left( {1 - p_{i} } \right)\alpha_{i}^{{h_{i} }} }}{.} \)

The second part of the Claim 1 is proved along the same line.

Appendix 2. Proof of the Theorem

$$ s_{1} = U_{{\left[ {s_{1} ,0} \right]}} ,s_{1} \left[ 1 \right],s_{1} \left[ 2 \right], \ldots ,s_{1} \left[ n \right],s_{1} \left[ {n + 1} \right], \ldots $$
$$ s_{2} = U_{{\left[ {s_{1} ,0} \right]}} ,s_{1} \left[ 1 \right],s_{1} \left[ 2 \right], \ldots ,s_{1} \left[ {n + 1} \right],s_{1} \left[ n \right], \ldots $$

To prove the theorem, it suffices to prove the following relation:

$$ F\left( {s_{1} } \right) \le F\left( {s_{2} } \right) \Leftrightarrow Q_{{s_{1} \left[ n \right]}} \ge Q_{{s_{1} \left[ {n + 1} \right]}} . $$

We have:

$$ \begin{aligned} F\left( {s_{1} } \right) & = \sum\limits_{1 \le m \le M} {c_{{s_{1} \left[ m \right]}} \cdot T_{{s_{1} \left[ m \right]}} \cdot P_{{s_{1} \left[ m \right]}} } = \sum\limits_{1 \le m \le M} {c_{{s_{1} \left[ m \right]}} \cdot T_{{s_{1} \left[ m \right]}} \cdot P_{{s_{1} \left[ m \right]}} } \left( {A_{{s_{1} \left[ m \right]}} } \right) \\ & = \sum\limits_{m = 1}^{n - 1} {c_{{s_{1} \left[ m \right]}} \cdot T_{{s_{1} \left[ m \right]}} \cdot P_{{s_{1} \left[ m \right]}} } + \sum\limits_{n + 2 \le m \le M} {c_{{s_{1} \left[ m \right]}} \cdot T_{{s_{1} \left[ m \right]}} \cdot P_{{s_{1} \left[ m \right]}} } \\ & \quad + c_{{s_{1} \left[ n \right]}} \cdot T_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ n \right]}} + c_{{s_{1} \left[ {n + 1} \right]}} \cdot T_{{s_{1} \left[ {n + 1} \right]}} \cdot P_{{s_{1} \left[ {n + 1} \right]}} \\ \end{aligned} $$
$$ \begin{aligned} F\left( {s_{2} } \right) & = \sum\limits_{1 \le m \le M} {c_{{s_{2} \left[ m \right]}} \cdot T_{{s_{2} \left[ m \right]}} \cdot P_{{s_{2} \left[ m \right]}} } = \sum\limits_{1 \le m \le M} {c_{{s_{2} \left[ m \right]}} \cdot T_{{s_{2} \left[ m \right]}} \cdot P_{{s_{2} \left[ m \right]}} } \left( {A_{{s_{2} \left[ m \right]}} } \right) \\ & = \sum\limits_{m = 1}^{n - 1} {c_{{s_{2} \left[ m \right]}} \cdot T_{{s_{2} \left[ m \right]}} \cdot P_{{s_{2} \left[ m \right]}} } + \sum\limits_{n + 2 \le m \le M} {c_{{s_{2} \left[ m \right]}} \cdot T_{{s_{2} \left[ m \right]}} \cdot P_{{s_{2} \left[ m \right]}} } \\ & \quad + c_{{s_{2} \left[ n \right]}} \cdot T_{{s_{2} \left[ n \right]}} \cdot P_{{s_{2} \left[ n \right]}} + c_{{s_{2} \left[ {n + 1} \right]}} \cdot T_{{s_{2} \left[ {n + 1} \right]}} \cdot P_{{s_{2} \left[ {n + 1} \right]}} \\ \end{aligned} $$
$$ F\left( {s_{2} } \right) = \sum\limits_{m = 1}^{n - 1} {c_{{s_{1} \left[ m \right]}} \cdot T_{{s_{1} \left[ m \right]}} \cdot P_{{s_{1} \left[ m \right]}} } + \sum\limits_{n + 2 \le m \le M} {c_{{s_{1} \left[ m \right]}} \cdot T_{{s_{1} \left[ m \right]}} \cdot P_{{s_{1} \left[ m \right]}} } + c_{{s_{1} \left[ {n + 1} \right]}} \cdot \left( {T_{{s_{1} \left[ {n + 1} \right]}} - t_{{s_{1} \left[ n \right]}} } \right) \cdot P_{{s_{1} \left[ {n + 1} \right]}} + c_{{s_{1} \left[ n \right]}} \cdot T_{{s_{1} \left[ {n + 1} \right]}} \cdot P_{{s_{1} \left[ n \right]}} $$
$$ \begin{aligned} F\left( {s_{1} } \right) - F\left( {s_{2} } \right) & = c_{{s_{1} \left[ n \right]}} \cdot T_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ n \right]}} + c_{{s_{1} \left[ {n + 1} \right]}} \cdot T_{{s_{1} \left[ {n + 1} \right]}} \cdot P_{{s_{1} \left[ {n + 1} \right]}} \\ & \quad - c_{{s_{1} \left[ {n + 1} \right]}} \cdot \left( {T_{{s_{1} \left[ {n + 1} \right]}} - t_{{s_{1} \left[ n \right]}} } \right) \cdot P_{{s_{1} \left[ {n + 1} \right]}} - c_{{s_{1} \left[ n \right]}} \cdot T_{{s_{1} \left[ {n + 1} \right]}} \cdot P_{{s_{1} \left[ n \right]}} \\ & = - c_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ n \right]}} \cdot \left( {T_{{s_{1} \left[ {n + 1} \right]}} - T_{{s_{1} \left[ n \right]}} } \right) + c_{{s_{1} \left[ {n + 1} \right]}} \cdot t_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ {n + 1} \right]}} \\ & = - c_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ n \right]}} \cdot t_{{s_{1} \left[ {n + 1} \right]}} + c_{{s_{1} \left[ {n + 1} \right]}} \cdot t_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ {n + 1} \right]}} \\ \end{aligned} $$

We obtain that

$$ F\left( {s_{1} } \right) - F\left( {s_{2} } \right) = - c_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ n \right]}} \cdot t_{{s_{1} \left[ {n + 1} \right]}} + c_{{s_{1} \left[ {n + 1} \right]}} \cdot t_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ {n + 1} \right]}} $$
$$ F\left( {s_{1} } \right) \le F\left( {s_{2} } \right) \Leftrightarrow F\left( {s_{1} } \right) - F\left( {s_{2} } \right) \le 0 \Leftrightarrow $$
$$ \begin{aligned} - c_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ n \right]}} \cdot t_{{s_{1} \left[ {n + 1} \right]}} + c_{{s_{1} \left[ {n + 1} \right]}} \cdot t_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ {n + 1} \right]}} \le 0 \Leftrightarrow \hfill \\ c_{{s_{1} \left[ {n + 1} \right]}} \cdot t_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ {n + 1} \right]}} \le c_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ n \right]}} \cdot t_{{s_{1} \left[ {n + 1} \right]}} \Leftrightarrow \hfill \\ \frac{{c_{{s_{1} \left[ {n + 1} \right]}} \cdot P_{{s_{1} \left[ {n + 1} \right]}} }}{{t_{{s_{1} \left[ {n + 1} \right]}} }} \le \frac{{c_{{s_{1} \left[ n \right]}} \cdot P_{{s_{1} \left[ n \right]}} }}{{t_{{s_{1} \left[ n \right]}} }} \Leftrightarrow \hfill \\ Q_{{s_{1} \left[ {n + 1} \right]}} \le Q_{{s_{1} \left[ n \right]}} \Leftrightarrow \hfill \\ Q_{{s_{1} \left[ n \right]}} \ge Q_{{s_{1} \left[ {n + 1} \right]}} \hfill \\ \end{aligned} $$

The theorem is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, T.C.E., Kriheli, B., Levner, E. et al. Scheduling an autonomous robot searching for hidden targets. Ann Oper Res 298, 95–109 (2021). https://doi.org/10.1007/s10479-019-03141-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03141-1

Keywords

Navigation