Emission allowance allocation mechanism design: a low-carbon operations perspective | Annals of Operations Research Skip to main content
Log in

Emission allowance allocation mechanism design: a low-carbon operations perspective

  • S.I.: RealCaseOR
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Governments around the world are seeking an effective mechanism to cope with air pollution and climate change. The allocation of emission allowances, which is a key mechanism in the cap-and-trade system, is an important and intricate puzzle faced by environmental agencies. In this paper, we build a Stackelberg model to explore the emission allowance allocation mechanism design from an operations perspective. We demonstrate the feasibility and effectiveness of a linear emission allowance allocation mechanism. The results show that the emission allowance allocated by the government should always be insufficient to satisfy the ex-post emission demand at the industry level, even with low-carbon investment. To analyze the impacts on firms’ decision-makings, we explore a scenario in which two firms in the same industry sell a homogenous product to the market. The optimal low-carbon investment and production decisions are significantly affected by these market and carbon-related factors. Numerical examples are presented to further demonstrate the results that our paper has derived and investigate the optimal operational decisions of the two firms. Several meaningful management insights on allocation mechanism design and low-carbon operations of firms are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn, J. (2014). Assessment of initial emission allowance allocation methods in the Korean electricity market. Energy Economics, 43(2), 244–255.

    Google Scholar 

  • Benjaafar, S., Li, Y., & Daskin, M. (2013). Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116.

    Google Scholar 

  • Brandenburg, M., & Rebs, T. (2015). Sustainable supply chain management: A modeling perspective. Annals of Operations Research, 229(1), 213–252.

    Google Scholar 

  • Brauneis, A., Mestel, R., & Palan, S. (2013). Inducing low-carbon investment in the electric power industry through a price floor for emissions trading. Energy Policy, 53, 190–204.

    Google Scholar 

  • Chang, X., Xia, H., Zhu, H., Fan, T., & Zhao, H. (2015). Production decisions in a hybrid manufacturing–remanufacturing system with carbon cap and trade mechanism. International Journal of Production Economics, 162, 160–173.

    Google Scholar 

  • Chen, Y., & Lin, S. (2015). Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China. Natural Hazards, 76(3), 1893–1909.

    Google Scholar 

  • Chiu, Y.-H., Lin, J.-C., Su, W.-N., & Liu, J.-K. (2015). An efficiency evaluation of the EU’s allocation of carbon emission allowances. Energy Sources, Part B: Economics, Planning and Policy, 10(2), 192–200.

    Google Scholar 

  • Cong, R.-G., & Wei, Y.-M. (2010). Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options. Energy, 35(9), 3921–3931.

    Google Scholar 

  • Dong, C., Shen, B., Chow, P.-S., Yang, L., & Ng, C. T. (2016). Sustainability investment under cap-and-trade regulation. Annals of Operations Research, 240(2), 509–531.

    Google Scholar 

  • Drake, D. F., Kleindorfer, P. R., & Van Wassenhove, L. N. (2016). Technology choice and capacity portfolios under emissions regulation. Production and Operations Management, 25(6), 1006–1025.

    Google Scholar 

  • Du, S., Hu, L., & Song, M. (2016). Production optimization considering environmental performance and preference in the cap-and-trade system. Journal of Cleaner Production, 112, 1600–1607.

    Google Scholar 

  • Du, S., Hu, L., & Wang, L. (2017a). Low-carbon supply policies and supply chain performance with carbon concerned demand. Annals of Operations Research, 255(1–2), 569–590.

    Google Scholar 

  • Du, S., Ma, F., Fu, Z., Zhu, L., & Zhang, J. (2015). Game-theoretic analysis for an emission-dependent supply chain in a ‘cap-and-trade’ system. Annals of Operations Research, 228(1), 135–149.

    Google Scholar 

  • Du, S., Zhu, Y., Zhu, Y., & Tang, W. (2017b). Allocation policy considering firm’s time-varying emission reduction in a cap-and-trade system. Annals of Operations Research,. https://doi.org/10.1007/s10479-017-2606-0.

    Article  Google Scholar 

  • Filar, J. A., & Gaertner, P. S. (1997). A regional allocation of world \(\text{ CO }_2\) emission reductions. Mathematics and Computers in Simulation, 43(3–6), 269–275.

    Google Scholar 

  • Gallego, G., & Van Ryzin, G. (1994). Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management Science, 40(8), 999–1020.

    Google Scholar 

  • Gomes, E., & Lins, M. E. (2008). Modelling undesirable outputs with zero sum gains data envelopment analysis models. Journal of the Operational Research Society, 59(5), 616–623.

    Google Scholar 

  • Goulder, L. H., Hafstead, M. A., & Dworsky, M. (2010). Impacts of alternative emissions allowance allocation methods under a federal cap-and-trade program. Journal of Environmental Economics and management, 60(3), 161–181.

    Google Scholar 

  • Han, R., Yu, B.-Y., Tang, B.-J., Liao, H., & Wei, Y.-M. (2017). Carbon emissions quotas in the Chinese road transport sector: A carbon trading perspective. Energy Policy, 106, 298–309.

    Google Scholar 

  • He, P., Zhang, W., Xu, X., & Bian, Y. (2015). Production lot-sizing and carbon emissions under cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 103, 241–248.

    Google Scholar 

  • Hong, T., Koo, C., & Lee, S. (2014). Benchmarks as a tool for free allocation through comparison with similar projects: Focused on multi-family housing complex. Applied Energy, 114(2), 663–675.

    Google Scholar 

  • Hong, Z., Chu, C., Zhang, L. L., & Yu, Y. (2017). Optimizing an emission trading scheme for local governments: A Stackelberg game model and hybrid algorithm. International Journal of Production Economics, 193, 172–182.

    Google Scholar 

  • Jaber, M. Y., Glock, C. H., & El Saadany, A. M. (2013). Supply chain coordination with emissions reduction incentives. International Journal of Production Research, 51(1), 69–82.

    Google Scholar 

  • Jeuland, A. P., & Shugan, S. M. (1988). Note-channel of distribution profits when channel members form conjectures. Marketing Science, 7(2), 202–210.

    Google Scholar 

  • Ji, J., Zhang, Z., & Yang, L. (2017). Comparisons of initial carbon allowance allocation rules in an O2O retail supply chain with the cap-and-trade regulation. International Journal of Production Economics, 187, 68–84.

    Google Scholar 

  • Jin, M., Granda-Marulanda, N. A., & Down, I. (2014). The impact of carbon policies on supply chain design and logistics of a major retailer. Journal of Cleaner Production, 85, 453–461.

    Google Scholar 

  • Kaur, H., & Singh, S. P. (2016). Sustainable procurement and logistics for disaster resilient supply chain. Annals of Operations Research,. https://doi.org/10.1007/s10479-016-2374-2.

    Article  Google Scholar 

  • Kober, T., van der Zwaan, B., & Rösler, H. (2015). Schemes for the regional allocation of emission allowances under stringent global climate policy. In G. Giannakidis, M. Labriet, B. P. OGallachóir, & G. Tosato (Eds.), Informing energy and climate policies using energy systems models. Berlin: Springer.

    Google Scholar 

  • Liao, Z., Zhu, X., & Shi, J. (2015). Case study on initial allocation of Shanghai carbon emission trading based on Shapley value. Journal of Cleaner Production, 103(15), 338–344.

    Google Scholar 

  • Lippman, S. A., & McCardle, K. F. (1997). The competitive newsboy. Operations Research, 45(1), 54–65.

    Google Scholar 

  • MacLeod, C., Eversley, M., (2014). U.S. China reach ‘historic’ deal to cut emissions. http://www.usatoday.com/story/news/world/2014/11/11/china-climate-change-deal/18895661/. Accessed November 20, 2014.

  • Meunier, G., Ponssard, J.-P., & Quirion, P. (2014). Carbon leakage and capacity-based allocations: Is the EU right? Journal of Environmental Economics and Management, 68(2), 262–279.

    Google Scholar 

  • Pan, X., Teng, F., & Wang, G. (2014). Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle. Applied Energy, 113, 1810–1818.

    Google Scholar 

  • Qiu, R., Xu, J., & Zeng, Z. (2017). Carbon emission allowance allocation with a mixed mechanism in air passenger transport. Journal of Environmental Management, 200, 204–216.

    Google Scholar 

  • Rezaee, A., Dehghanian, F., Fahimnia, B., & Beamon, B. (2017). Green supply chain network design with stochastic demand and carbon price. Annals of Operations Research, 250(2), 463–485.

    Google Scholar 

  • Rosendahl, K. E., & Storrøsten, H. B. (2015). Allocation of emission allowances: Impacts on technology investments. Climate Change Economics, 6(03), 1550010.

    Google Scholar 

  • Schmidt, R. C., & Heitzig, J. (2014). Carbon leakage: Grandfathering as an incentive device to avert firm relocation. Journal of Environmental Economics and Management, 67(2), 209–223.

    Google Scholar 

  • Sheu, J.-B., & Li, F. (2013). Market competition and greening transportation of airlines under the emission trading scheme: A case of Duopoly market. Transportation Science, 48(4), 684–694.

    Google Scholar 

  • Song, M.-L., Fisher, R., Wang, J.-L., & Cui, L.-B. (2016). Environmental performance evaluation with big data: Theories and methods. Annals of Operations Research,. https://doi.org/10.1007/s10479-016-2158-8.

    Article  Google Scholar 

  • Song, M.-L., Zhang, W., & Qiu, X.-M. (2015). Emissions trading system and supporting policies under an emissions reduction framework. Annals of Operations Research, 228(1), 125–134.

    Google Scholar 

  • Tang, C. S., & Zhou, S. (2012). Research advances in environmentally and socially sustainable operations. European Journal of Operational Research, 223(3), 585–594.

    Google Scholar 

  • Toptal, A., & Çetinkaya, B. (2017). How supply chain coordination affects the environment: A carbon footprint perspective. Annals of Operations Research, 250(2), 487–519.

    Google Scholar 

  • Toptal, A., Özlü, H., & Konur, D. (2014). Joint decisions on inventory replenishment and emission reduction investment under different emission regulations. International Journal of Production Research, 52(1), 243–269.

    Google Scholar 

  • Wang, K., Zhang, X., Wei, Y.-M., & Yu, S. (2013). Regional allocation of \(\text{ CO }_2\) emissions allowance over provinces in China by 2020. Energy Policy, 54, 214–229.

    Google Scholar 

  • WHO. (2016). Ambient air pollution: A global assessment of exposure and burden of disease. http://who.int/phe/publications/air-pollution-global-assessment/en/. Accessed March 5, 2017.

  • Winkler, H., Spalding-Fecher, R., & Tyani, L. (2002). Comparing developing countries under potential carbon allocation schemes. Climate Policy, 2(4), 303–318.

    Google Scholar 

  • Xia, L., Guo, T., Qin, J., Yue, X., & Zhu, N. (2017). Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system. Annals of Operations Research,. https://doi.org/10.1007/s10479-017-2657-2.

    Article  Google Scholar 

  • Xiong, L., Shen, B., Qi, S., Price, L., & Ye, B. (2017). The allowance mechanism of China’s carbon trading pilots: A comparative analysis with schemes in EU and california. Applied Energy, 185, 1849–1859.

    Google Scholar 

  • Xu, X., He, P., Xu, H., & Zhang, Q. (2017). Supply chain coordination with green technology under cap-and-trade regulation. International Journal of Production Economics, 183, 433–442.

    Google Scholar 

  • Yi, W.-J., Zou, L.-L., Guo, J., Wang, K., & Wei, Y.-M. (2011). How can China reach its \(\text{ CO }_2\) intensity reduction targets by 2020? A regional allocation based on equity and development. Energy Policy, 39(5), 2407–2415.

    Google Scholar 

  • Yu, S., Wei, Y.-M., & Wang, K. (2014). Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition. Energy Policy, 66, 630–644.

    Google Scholar 

  • Zhang, B., & Xu, L. (2013). Multi-item production planning with carbon cap and trade mechanism. International Journal of Production Economics, 144(1), 118–127.

    Google Scholar 

  • Zhang, J., Xiao, J., Chen, X., Liang, X., Fan, L., & Ye, D. (2017). Allowance and allocation of industrial volatile organic compounds emission in China for year 2020 and 2030. Journal of Environmental Sciences,. https://doi.org/10.1016/j.jes.2017.10.003.

    Article  Google Scholar 

  • Zhang, Y.-J., & Hao, J.-F. (2017). Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles. Annals of Operations Research, 255(1–2), 117–140.

    Google Scholar 

  • Zhang, Y.-J., Wang, A.-D., & Da, Y.-B. (2014). Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method. Energy Policy, 74, 454–464.

    Google Scholar 

  • Zhang, Y.-J., Wang, A.-D., & Tan, W. (2015). The impact of China’s carbon allowance allocation rules on the product prices and emission reduction behaviors of ETS-covered enterprises. Energy Policy, 86, 176–185.

    Google Scholar 

  • Zhao, J., Hobbs, B. F., & Pang, J.-S. (2010). Long-run equilibrium modeling of emissions allowance allocation systems in electric power markets. Operations Research, 58(3), 529–548.

    Google Scholar 

  • Zhao, R., Min, N., Geng, Y., & He, Y. (2017). Allocation of carbon emissions among industries/sectors: An emissions intensity reduction constrained approach. Journal of Cleaner Production, 142, 3083–3094.

    Google Scholar 

  • Zhou, P., & Wang, M. (2016). Carbon dioxide emissions allocation: A review. Ecological Economics, 125, 47–59.

    Google Scholar 

  • Zhou, P., Zhang, L., Zhou, D., & Xia, W. (2013). Modeling economic performance of interprovincial \(\text{ CO }_2\) emission reduction quota trading in China. Applied Energy, 112, 1518–1528.

    Google Scholar 

Download references

Acknowledgements

We are grateful for the editor’s and anonymous reviewers’ constructive comments and suggestions which have greatly improved the quality of this paper. We also thank Dr. Li Wang for her valuable suggestions on model analysis and acknowledge the USTC Modern Logistics Research Centre for its data-driven practical platform. This research was supported by the National Natural Science Foundation of China (Grant Nos. 71571171, 71631006, 71471168), the Foundation for International Cooperation and Exchange of the National Natural Science Foundation of China (No. 71520107002), the Youth Innovation Promotion Association, CAS (Grant No. 2015364) and the Fundamental Research Funds for the Central Universities (Grant No. WK2040160028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Hu.

Appendices

Appendix A: The linear form of allocation mechanism

Proof

we firstly discuss the situation where the emission allowances per product is linear with carbon emission reduction rate.

1.1 Step 1: Solve the industry’s profit maximization problem

The profit function of the industry has been given in Eq. (6). The first-order conditions of \(\pi \) with respect to q and \(\theta \) respectively are:

$$\begin{aligned} \left\{ \begin{array}{l} \frac{{\partial \pi }}{{\partial q}} = p{\bar{F}}(q) + {p_\mathrm{{e}}}\left[ {{K_o} - {e_o} + \left( {{e_o} - a} \right) \rho \left( \theta \right) } \right] - c - \theta = 0; \\ \frac{{\partial \pi }}{{\partial \theta }} = \left( {{p_e}\left( {{e_o} - a} \right) \rho '\left( \theta \right) - 1} \right) q = 0. \end{array} \right. \end{aligned}$$
(A.1)

Then, we get the equations of stationary point

$$\begin{aligned}&p{\bar{F}}({q^*}\left( {{K_o},a} \right) ) = c+{\theta ^*}\left( {{K_o},a} \right) - {p_e}\left[ {{K_o} - {e_o} + \left( {{e_o} - a} \right) \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] ; \qquad \end{aligned}$$
(A.2)
$$\begin{aligned}&{p_e}\left( {{e_o} - a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) = 1. \end{aligned}$$
(A.3)

Accordingly, we verify that the determinant of the Hessian matrix at the stationary point is negative definite:

$$\begin{aligned} \begin{array}{l} H_1 = \frac{{{\partial ^2}\pi }}{{\partial {q^2}}} = p\left( {0 - f\left( q \right) } \right) = - pf\left( q \right)< 0;\\ H_2 = \frac{{{\partial ^2}\pi }}{{\partial q\partial \theta }} = {p_e}\left( {{e_o} - a} \right) \rho '\left( \theta \right) - 1 = 0;\\ H_3 = \frac{{{\partial ^2}\pi }}{{\partial {\theta ^2}}} = {p_e}\left( {{e_o} - a} \right) \rho ''\left( \theta \right) q < 0;\\ {H_1}{H_3} - {\left( {{H_2}} \right) ^2} = - pf\left( q \right) {p_e}\left( {{e_o} - a} \right) \rho ''\left( \theta \right) q > 0. \end{array} \end{aligned}$$

So the \(\pi \) reaches the maximum at the stationary point.

1.2 Step 2: Solve the optimization problem faced by the government

The government anticipates the behaviors of the industry and makes own decisions. Now, the objective function of the government has been given in Eq. (8). To find the optimal results, we firstly take the derivative of Eq. (A.2) with respect to a and \({K_o}\) respectively. Then, we have

$$\begin{aligned} \left\{ \begin{array}{l} - pf \left( {{q^*} \left( {{K_o},a} \right) } \right) \frac{{\partial {q^*} \left( {{K_o},a} \right) }}{{\partial a}} = \frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial a}} - {p_e} \left( {{e_o} - a} \right) {\rho ^\prime } \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial a}} + {p_e}\rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) ;\\ - pf \left( {{q^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} = \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} - {p_e} - {p_e}\left( {{e_o} - a} \right) {\rho ^\prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}}. \end{array} \right. \nonumber \\ \end{aligned}$$
(A.4)

Reducing the above equations, we get

$$\begin{aligned} \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial a}} = - \frac{{{p_e}\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }};\begin{array}{*{20}{c}} {}&{} \end{array}\frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} = \frac{{{p_e}}}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }}. \end{aligned}$$
(A.5)

By taking the derivative of Eq. (A.3) with respect to a and \({K_o}\) respectively, we have

$$\begin{aligned} \left\{ \begin{array}{l} {p_e}\left( {{e_o} - a} \right) \rho ''\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}} = {p_e}\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) ;\\ {p_e}\left( {{e_o} - a} \right) \rho ''\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} = 0. \end{array} \right. \end{aligned}$$
(A.6)

Reducing the above equations, we get

$$\begin{aligned} \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}} = \frac{{\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}{{({e_o} - a)\rho ''\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }};\begin{array}{*{20}{c}} {}&{} \end{array}\frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} = 0. \end{aligned}$$
(A.7)

Finally, the first-order conditions of W regarding a and \({K_o}\) can be derived as:

$$\begin{aligned} \left\{ \begin{array}{l} \frac{{\partial W}}{{\partial a}}=\frac{{\partial W}}{{\partial {q^*}\left( {{K_o},a} \right) }}\frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial a}} + \frac{{\partial W}}{{\partial {\theta ^*}\left( {{K_o},a} \right) }}\frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}}\\ \qquad = \left( {p{\bar{F}}\left( {{q^*}\left( {{K_o},a} \right) } \right) - (c + {\theta ^*}\left( {{K_o},a} \right) ) - \delta {e_o} \left( {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) } \right) \times \left( { - \frac{{{p_e}\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }}} \right) \\ \quad \qquad +\left( {\delta {e_o}{q^*}\left( {{K_o},a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - {q^*}\left( {{K_o},a} \right) } \right) \times \frac{{\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}{{({e_o} - a)\rho ''\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }} = 0;\\ \frac{{\partial W}}{{\partial {K_o}}} = \frac{{\partial W}}{{\partial {q^*}\left( {{K_o},a} \right) }}\frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} + \frac{{\partial W}}{{\partial {\theta ^*}\left( {{K_o},a} \right) }}\frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}}\\ \;\,\qquad = \left( {p{\bar{F}}\left( {{q^*}\left( {{K_o},a} \right) } \right) - \left( {c + {\theta ^*}\left( {{K_o},a} \right) } \right) - \delta {e_o} \left( {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) } \right) \times \frac{{{p_e}}}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }}\\ \;\,\quad \qquad + \left( {\delta {e_o}{q^*}\left( {{K_o},a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - {q^*}\left( {{K_o},a} \right) } \right) \times 0 = 0. \end{array} \right. \nonumber \\ \end{aligned}$$
(A.8)

Reducing the above equations, we get

$$\begin{aligned} \left\{ \begin{array}{l} \delta {e_o}\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - 1 = 0;\\ p{\bar{F}}({q^*}\left( {{K_o},a} \right) ) - (c + {\theta ^*}\left( {{K_o},a} \right) ) - \delta {e_o} \left( {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) = 0. \end{array} \right. \end{aligned}$$
(A.9)

We verify that the determinant of the Hessian matrix is negative definite:

$$\begin{aligned} \left\{ \begin{array}{l} \frac{{{\partial ^2}W}}{{\partial {{\left( {{q^*}\left( {{K_o},a} \right) } \right) }^2}}} = - pf\left( {{q^*}\left( {{K_o},a} \right) } \right) ;\\ \frac{{{\partial ^2}W}}{{\partial {{\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }^2}}} = \delta {q^*}\left( {{K_o},a} \right) {e_o}{\rho ^{\prime \prime }}\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) ;\\ \frac{{{\partial ^2}W}}{{\partial {q^*}\left( {{K_o},a} \right) \partial {\theta ^*}\left( {{K_o},a} \right) }} = \delta {e_o}{\rho ^\prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - 1 = 0; \end{array} \right. \end{aligned}$$
$$\begin{aligned} {H_4}= & {} \frac{{{\partial ^2}W}}{{\partial {a^2}}}= \left( {\frac{{\partial {q^*} \left( {{K_o},a} \right) }}{{\partial a}},\frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial a}}} \right) \left( {\begin{array}{*{20}{c}} {\frac{{{\partial ^2}W}}{{\partial {{\left( {{q^*} \left( {{K_o},a} \right) } \right) }^2}}}}&{}{\frac{{{\partial ^2}W}}{{\partial {q^*} \left( {{K_o},a} \right) \partial {\theta ^*} \left( {{K_o},a} \right) }}}\\ {\frac{{{\partial ^2}W}}{{\partial {q^*} \left( {{K_o},a} \right) \partial {\theta ^*} \left( {{K_o},a} \right) }}}&{}{\frac{{{\partial ^2}W}}{{\partial {{\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) }^2}}}} \end{array}} \right) \left( \begin{array}{l} \frac{{\partial {q^*} \left( {{K_o},a} \right) }}{{\partial a}}\\ \frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial a}} \end{array} \right) \\&+ \left( {\frac{{\partial W}}{{\partial {q^*}\left( {{K_o},a} \right) }},\frac{{\partial W}}{{\partial {\theta ^*}\left( {{K_o},a} \right) }}} \right) \left( \begin{array}{l} \frac{{{\partial ^2}{q^*}\left( {{K_o},a} \right) }}{{\partial {a^2}}}\\ \frac{{{\partial ^2}{\theta ^*}\left( {{K_o},a} \right) }}{{\partial {a^2}}} \end{array} \right) \\= & {} - \frac{{{{\left( {{p_e}\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) }^2}}}{{pf({q^*}\left( {{K_o},a} \right) )}} + \frac{{\delta {q^*}\left( {{K_o},a} \right) {e_o}{{\left( {\rho ^{\prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) }^2}}}{{{{\left( {{e_o} - a} \right) }^2}\rho ^{\prime \prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }} < 0;\\ {H_5}= & {} \frac{{{\partial ^2}W}}{{\partial a\partial {K_o}}} = \left( {\frac{{\partial {q^*} \left( {{K_o},a} \right) }}{{\partial {K_o}}},\frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial {K_o}}}} \right) \left( {\begin{array}{*{20}{c}} {\frac{{{\partial ^2}W}}{{\partial {{\left( {{q^*} \left( {{K_o},a} \right) } \right) }^2}}}}&{}{\frac{{{\partial ^2}W}}{{\partial {q^*} \left( {{K_o},a} \right) \partial {\theta ^*} \left( {{K_o},a} \right) }}}\\ {\frac{{{\partial ^2}W}}{{\partial {q^*} \left( {{K_o},a} \right) \partial {\theta ^*} \left( {{K_o},a} \right) }}}&{}{\frac{{{\partial ^2}W}}{{\partial {{\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) }^2}}}} \end{array}} \right) \left( \begin{array}{l} \frac{{\partial {q^*} \left( {{K_o},a} \right) }}{{\partial a}}\\ \frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial a}} \end{array} \right) \\&+ \left( {\frac{{\partial W}}{{\partial {q^*}\left( {{K_o},a} \right) }},\frac{{\partial W}}{{\partial {\theta ^*}\left( {{K_o},a} \right) }}} \right) \left( \begin{array}{l} \frac{{{\partial ^2}{q^*}\left( {{K_o},a} \right) }}{{\partial a\partial {K_o}}}\\ \frac{{{\partial ^2}{\theta ^*}\left( {{K_o},a} \right) }}{{\partial a\partial {K_o}}} \end{array} \right) \\= & {} \frac{{{p_e}^{{2}}\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }};\\ {H_6}= & {} \frac{{{\partial ^2}W}}{{\partial {K_o}^2}} = \left( {\frac{{\partial {q^*} \left( {{K_o},a} \right) }}{{\partial {K_o}}},\frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial {K_o}}}} \right) \left( {\begin{array}{*{20}{c}} {\frac{{{\partial ^2}W}}{{\partial {{\left( {{q^*} \left( {{K_o},a} \right) } \right) }^2}}}}&{}{\frac{{{\partial ^2}W}}{{\partial {q^*} \left( {{K_o},a} \right) \partial {\theta ^*} \left( {{K_o},a} \right) }}}\\ {\frac{{{\partial ^2}W}}{{\partial {q^*} \left( {{K_o},a} \right) \partial {\theta ^*} \left( {{K_o},a} \right) }}}&{}{\frac{{{\partial ^2}W}}{{\partial {{\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) }^2}}}} \end{array}} \right) \left( \begin{array}{l} \frac{{\partial {q^*} \left( {{K_o},a} \right) }}{{\partial {K_o}}}\\ \frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial {K_o}}}\end{array}\right) \\&+ \left( {\frac{{\partial W}}{{\partial {q^*}\left( {{K_o},a} \right) }},\frac{{\partial W}}{{\partial {\theta ^*}\left( {{K_o},a} \right) }}} \right) \left( \begin{array}{l} \frac{{{\partial ^2}{q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}^2}}\\ \frac{{{\partial ^2}{\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}^2}} \end{array} \right) \\= & {} - \frac{{{p_e}^{{2}}}}{{pf({q^*}\left( {{K_o},a} \right) )}}; \\ {H_4}{H_6} - {H_5}^2= & {} \left( { - \frac{{{{\left( {{p_e}\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) }^2}}}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }} + \frac{{\delta {q^*}\left( {{K_o},a} \right) {e_o}{{\left( {\rho ^{\prime } \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) }^2}}}{{{{\left( {{e_o} - a} \right) }^2}\rho ^{\prime \prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}} \right) \times \left( { - \frac{{{p_e}^{{2}}}}{{pf({q^*}\left( {{K_o},a} \right) )}}} \right) \\&- {\left( {\frac{{{p_e}^{{2}}\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}{{pf({q^*}\left( {{K_o},a} \right) )}}} \right) ^2}\\= & {} \frac{{{{\left( {{p_e}^2\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) }^2}}}{{{{\left( {pf({q^*}\left( {{K_o},a} \right) )} \right) }^2}}} - \frac{{\delta {q^*}\left( {{K_o},a} \right) {e_o}{{\left( {\rho ^{\prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) }^2}{p_e}^2}}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) {{\left( {{e_o} - a} \right) }^2}\rho ^{\prime \prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }} - \frac{{{{\left( {{p_e}^2\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) }^2}}}{{{{\left( {pf({q^*}\left( {{K_o},a} \right) )} \right) }^2}}}\\= & {} - \frac{{{q^*}\left( {{K_o},a} \right) {p_e}^{{2}}\rho ^{\prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) {{\left( {{e_o} - a} \right) }^2}\rho ^{\prime \prime }\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }} > 0. \end{aligned}$$

So the solution to the first order conditions gives the unique solution.

1.3 Step 3: To find the equilibrium solutions

Combining Eqs. (A.2), (A.3) and (A.9), we can derive the optimal solutions. The optimum decisions for the industry and government are shown as follows.

(A.10)

The form of the carbon emission allowances allocation mechanism is given as:

$$\begin{aligned} K\left( {\rho \left( \theta \right) } \right) = {K_o} - a\rho \left( \theta \right) = \left( {1 - \frac{\delta }{{{p_e}}}} \right) \left( {1 - \rho \left( \theta \right) } \right) {e_o}. \end{aligned}$$
(A.11)

\(\square \)

Appendix B: The quadratic form of allocation mechanism

In this paper, we attempt to explore the other form of emission allowance allocation mechanism preliminarily. Here, we suppose that the carbon emission allowances per product may be a concave or convex function with regard to the industry-level carbon emission reduction rate. Then we adopt the quadratic form to represent the allocation mechanism, this form is formulated as follows:

$$\begin{aligned} K\left( {\rho \left( \theta \right) } \right) = A{\rho ^2}\left( \theta \right) + B\rho \left( \theta \right) + C. \end{aligned}$$
(B.1)

Additionally, we suppose that this allocation mechanism is a quadratic function with mathematical characteristics including \(K'\left( {\rho \left( \theta \right) } \right) < 0\) or \(K'\left( {\rho \left( \theta \right) } \right) > 0\), \(K\left( 0 \right) ={K_o}\), \(\mathop {\lim }\nolimits _{\rho \left( \theta \right) \rightarrow 1} K\left( {\rho \left( \theta \right) } \right) = 0\). And the second-order condition of the carbon emission allowances per product regarding the carbon emission reduction rate is constant. It can be described as:

$$\begin{aligned} K''\left( {\rho \left( \theta \right) } \right) = 2A = 2a. \end{aligned}$$
(B.2)

Based on the above characteristics of this quadratic function, the quadratic form of allocation mechanism is equivalent to:

$$\begin{aligned} K\left( {\rho \left( \theta \right) } \right) = a{\rho ^2}\left( \theta \right) - \left( {{K_o} + a} \right) \rho \left( \theta \right) + {K_o}. \end{aligned}$$
(B.3)

In this section, we try to examine the rationality and feasibility of this form. First of all, we discuss how this mechanism affects the production and carbon reduction decisions of the industry. Substituting Eq. (B.3) into Eq. (1), we have:

$$\begin{aligned} \pi= & {} pS\left( q \right) + \left\{ {{p_e}\left[ {K\left( {\rho \left( \theta \right) } \right) - {e_o}\left( {1 - \rho \left( \theta \right) } \right) } \right] - c - \theta } \right\} q\nonumber \\= & {} pS\left( q \right) + \left\{ {{p_e}\left[ {a{\rho ^2}\left( \theta \right) - \left( {{K_o} + a} \right) \rho \left( \theta \right) \mathrm{{ + }}{K_o} - {e_o}\left( {1 - \rho \left( \theta \right) } \right) } \right] - c - \theta } \right\} q. \end{aligned}$$
(B.4)

When the mechanism is declared by the government, the industry is to make decisions to realize its own interests. We can get the optimal production quantity and investment of the industry by taking the derivative of the profit function. The two decision variables are determined by:

$$\begin{aligned} \left\{ \begin{array}{l} p{\bar{F}} \left( {{q^*}\left( {{K_o},a} \right) } \right) = c + {\theta ^*}\left( {{K_o},a} \right) - {p_e}\left[ \begin{array}{l} a{\rho ^2}\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - \left( {{K_o} + a} \right) \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \\ +{K_o} - {e_o}\left( {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) \end{array} \right] ;\\ {p_e}\left[ {2a\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - \left( {{K_o} + a} \right) + {e_o}} \right] = \frac{1}{{\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}, \end{array} \right. \end{aligned}$$
(B.5)

where \({q^*}\left( {{K_o},a} \right) \) and \({\theta ^*}\left( {{K_o},a} \right) \) are the optimal reaction functions of the industry given \({K_o}\) and a. Here, the objective function of the government can be written as:

$$\begin{aligned} W= & {} pS\left( q \right) - \left( {c + \theta } \right) q - \delta q {e_o}\left( {1 - \rho \left( \theta \right) } \right) \nonumber \\= & {} pS \left( {{q^*} \left( {{K_o},a} \right) } \right) - \left( {c + {\theta ^*} \left( {{K_o},a} \right) } \right) {q^*} \left( {{K_o},a} \right) - \delta {q^*} \left( {{K_o},a} \right) {e_o}\left( {1 - \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right) .\nonumber \\ \end{aligned}$$
(B.6)

The first-order conditions of W regarding a and \({K_o}\) respectively are:

$$\begin{aligned} \frac{{\partial W}}{{\partial a}}= & {} \left[ {p{\bar{F}} \left( {{q^*} \left( {{K_o},a} \right) } \right) - \left( {c + {\theta ^*} \left( {{K_o},a} \right) } \right) - \delta {e_o}} \left( {1 - \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right) \right] \nonumber \\&\times \frac{{{p_e}\left[ {{\rho ^2}\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }}{{p f\left( {{q^*}\left( {{K_o},a} \right) } \right) }}\nonumber \\&+ \left[ {\delta {e_o}{q^*} \left( {{K_o},a} \right) \rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) - {q^*} \left( {{K_o},a} \right) } \right] \nonumber \\&\times \frac{{{p_e}\left[ {1 - 2\rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] {{\left[ {\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }^2}}}{{2a{p_e}\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) {{\left[ {\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }^2} + \rho ''\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) }} = 0; \end{aligned}$$
(B.7)
$$\begin{aligned} \frac{{\partial W}}{{\partial {K_o}}}= & {} \left[ {p{\bar{F}} \left( {{q^*}\left( {{K_o},a} \right) } \right) - \left( {c + {\theta ^*}\left( {{K_o},a} \right) } \right) - \delta {e_o} \left( {1 - \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right) } \right] \frac{{{p_e}\left[ {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }}\nonumber \\&+\left[ {\delta {e_o}{q^*} \left( {{K_o},a} \right) \rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) - {q^*} \left( {{K_o},a} \right) } \right] \nonumber \\&\times \frac{{{p_e}{{\left[ {\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }^2}}}{{2a{p_e}\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) {{\left[ {\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }^2} + \rho ''\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) }} = 0. \end{aligned}$$
(B.8)

By reducing the above equations, we get \(\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) = 1\). When the carbon emission reduction rate is 1, the government doesn’t need to allocate any allowance to the industry. However, the operations with no emission would not happen in real life and it is so hard for the industry to achieve 100% carbon emission reduction. Based on the actual practice, this paper assumes the carbon emission reduction rate is less than 1. So it doesn’t make sense to discuss the solution, i.e. \(\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) = 1\). This solution is infeasible and discarded since it doesn’t satisfy the assumption. Thus, there is no equilibrium solution under the strict quadratic form. Finally, the quadratic form will turn into the linear form.

$$\begin{aligned} K\left( {\rho \left( \theta \right) } \right)= & {} A\rho {\left( \theta \right) ^2}+B\rho \left( \theta \right) +C\mathrm{{ = }} a{\rho ^2}\left( \theta \right) - \left( {{K_o} + a} \right) \rho \left( \theta \right) + {K_o}\nonumber \\= & {} {K_o} - {K_o}\rho \left( \theta \right) = \left( {{e_o} - \frac{{\delta {e_o}}}{{{p_e}}}} \right) \left( {1 - \rho \left( \theta \right) } \right) , \end{aligned}$$
(B.9)

where \(a=0\).

Proof

We explore whether the quadratic form of allocation mechanism is executable. In the same manner which has been adopted in “Appendix A”, we address this problem by using the backward induction.

1.1 Step 1: Solve the industry’s profit maximization problem

The quadratic form of allocation mechanism and the profit function of the industry have been shown in Eqs. (B.3) and (B.4). The first-order conditions of \(\pi \) can be derived as:

$$\begin{aligned}&\frac{{\partial \pi }}{{\partial q}} = p{\bar{F}} \left( q \right) \nonumber \\&\quad + \left\{ {{p_e}\left[ {a{\rho ^2}\left( \theta \right) - \left( {{K_o} + a} \right) \rho \left( \theta \right) \mathrm{{ + }}{K_o} - {e_o}\left( {1 - \rho \left( \theta \right) } \right) } \right] - c - \theta } \right\} = 0;\quad \end{aligned}$$
(B.10)
$$\begin{aligned}&\frac{{\partial \pi }}{{\partial \theta }} = \left\{ {{p_e}\left[ {2a\rho \left( \theta \right) - \left( {{K_o} + a} \right) + {e_o}} \right] \rho '\left( \theta \right) - 1} \right\} q = 0. \end{aligned}$$
(B.11)

Then, the production quantity and low-carbon investment are given as follows:

$$\begin{aligned}&p{\bar{F}} \left( {{q^*} \left( {{K_o},a} \right) } \right) = c + {\theta ^*} \left( {{K_o},a} \right) \nonumber \\&\quad - {p_e} \left[ \begin{array}{l} a{\rho ^2}\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) - \left( {{K_o} + a} \right) \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) \\ +{K_o} - {e_o}\left( {1 - \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right) \end{array} \right] ; \end{aligned}$$
(B.12)
$$\begin{aligned}&{p_e}\left[ {2a\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - \left( {{K_o} + a} \right) + {e_o}} \right] = \frac{1}{{\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}. \end{aligned}$$
(B.13)

1.2 Step 2: Solve the optimization problem faced by the government

Likewise, the government makes decisions according to anticipated behaviors of the industry. The objective function of the government has been shown in Eq. (B.6). To get the first-order conditions of W, we firstly take the derivative of Eq. (B.12) with respect to a, we obtain

$$\begin{aligned}&- pf\left( {{q^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial a}} =\frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}}\nonumber \\&\qquad - {p_e}\left[ \begin{array}{l} {\rho ^2}\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) + 2a\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}}\\ - \left( {{K_o} + a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}}\\ - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) + {e_o}\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}} \end{array} \right] \nonumber \\&\quad = - {p_e}\left[ {{\rho ^2}\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] \nonumber \\&\qquad + \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}}\left[ {1 - {p_e}\left[ \begin{array}{l} 2a\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \\ - \left( {{K_o} + a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) + {e_o}\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \end{array} \right] } \right] \nonumber \\&\quad = - {p_e}\left[ {{\rho ^2}\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] . \end{aligned}$$
(B.14)

Reducing the above equation, we get

$$\begin{aligned} \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial a}} = \frac{{{p_e}\left[ {{\rho ^2}\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }}. \end{aligned}$$
(B.15)

Then, we take the derivative of Eq. (B.12) with respect to \({K_o}\), we obtain

$$\begin{aligned}&- pf\left( {{q^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} = \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} \nonumber \\&\qquad - {p_e}\left[ \begin{array}{l} 2a\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} + 1\\ - \left( {{K_o} + a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \\ + {e_o}\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} \end{array} \right] \nonumber \\&\quad = - {p_e} \left[ {1 - \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] \nonumber \\&\qquad + \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} \left[ {1 - {p_e} \left[ \begin{array}{l} 2a\rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) \rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) \\ - \left( {{K_o} + a} \right) \rho ' \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) + {e_o}\rho ' \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) \end{array} \right] } \right] \nonumber \\&\quad = - {p_e}\left[ {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] . \end{aligned}$$
(B.16)

Reducing the above equation, we get

$$\begin{aligned} \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} = \frac{{{p_e}\left[ {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }}. \end{aligned}$$
(B.17)

Next, we take the derivative of Eq. (B.13) with respect to a and \({K_o}\) respectively, we have

$$\begin{aligned}&{p_e} \left[ {2\rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) + 2a\rho ' \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial a}} - 1} \right] = - \frac{{\rho '' \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) }}{{{{\left[ {\rho ' \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }^2}}}\frac{{\partial {\theta ^*} \left( {{K_o},a} \right) }}{{\partial a}}; \end{aligned}$$
(B.18)
$$\begin{aligned}&{p_e}\left[ {2a\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} - 1} \right] = - \frac{{\rho ''\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}{{{{\left[ {\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }^2}}}\frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}}. \end{aligned}$$
(B.19)

Reducing the above equations, we get

$$\begin{aligned}&\frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}} = \frac{{{p_e}\left[ {1 - 2\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] {{\left[ {\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }^2}}}{{2a{p_e}\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) {{\left[ {\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }^2} + \rho ''\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}; \qquad \end{aligned}$$
(B.20)
$$\begin{aligned}&\frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} = \frac{{{p_e}{{\left[ {\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }^2}}}{{2a{p_e}\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) {{\left[ {\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }^2} + \rho ''\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }}. \end{aligned}$$
(B.21)

At last, we have the first-order conditions of W as follows:

$$\begin{aligned} \frac{{\partial W}}{{\partial a}}= & {} p{\bar{F}} \left( {{q^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial a}} - \left( {c + {\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial a}} \nonumber \\&-\, {q^*}\left( {{K_o},a} \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}} - \delta {e_o}\left( {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial a}}\nonumber \\&+ \,\delta {e_o}{q^*}\left( {{K_o},a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial a}} = \left[ p{\bar{F}} \left( {{q^*} \left( {{K_o},a} \right) } \right) - \left( {c + {\theta ^*} \left( {{K_o},a} \right) } \right) \right. \nonumber \\&\left. -\, \delta {e_o}\left( {1 - \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right) \right] \frac{{{p_e}\left[ {{\rho ^2}\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) - \rho \left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }}{{pf\left( {{q^*} \left( {{K_o},a} \right) } \right) }}\nonumber \\&+ \, \left[ {\delta {e_o}{q^*} \left( {{K_o},a} \right) \rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) - {q^*} \left( {{K_o},a} \right) } \right] \nonumber \\&\frac{{{p_e}\left[ {1 - 2\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] {{\left[ {\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }^2}}}{{2a{p_e}\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) {{\left[ {\rho '\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) } \right] }^2} + \rho ''\left( {{\theta ^*} \left( {{K_o},a} \right) } \right) }} = 0;\end{aligned}$$
(B.22)
$$\begin{aligned} \frac{{\partial W}}{{\partial {K_o}}}= & {} p{\bar{F}} \left( {{q^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} - \left( {c + {\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} - {q^*}\left( {{K_o},a} \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}}\nonumber \\&- \,\delta {e_o}\left( {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) \frac{{\partial {q^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}} + \delta {e_o}{q^*}\left( {{K_o},a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) \frac{{\partial {\theta ^*}\left( {{K_o},a} \right) }}{{\partial {K_o}}}\nonumber \\= & {} \left[ {p{\bar{F}} \left( {{q^*}\left( {{K_o},a} \right) } \right) - \left( {c + {\theta ^*}\left( {{K_o},a} \right) } \right) - \delta {e_o} \left( {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right) } \right] \frac{{{p_e}\left[ {1 - \rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }}{{pf\left( {{q^*}\left( {{K_o},a} \right) } \right) }}\nonumber \\&+\,\left[ {\delta {e_o}{q^*}\left( {{K_o},a} \right) \rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) - {q^*}\left( {{K_o},a} \right) } \right] \nonumber \\&\quad \times \frac{{{p_e}{{\left[ {\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }^2}}}{{2a{p_e}\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) {{\left[ {\rho '\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) } \right] }^2} + \rho ''\left( {{\theta ^*}\left( {{K_o},a} \right) } \right) }} = 0. \end{aligned}$$
(B.23)

We get the final solution by combining and reducing Eqs. (B.12), (B.13), (B.22) and (B.23), which is \(\rho \left( {{\theta ^*}\left( {{K_o},a} \right) } \right) = 1\).

As we all know, this situation in which there is no carbon emission is unrealistic and it is difficult for the industry to reach such a perfect level of carbon emission reduction. With the constraint \(0 \le \rho \left( \theta \right) < 1\), this solution should be discarded. \(\square \)

Appendix C: Proof of Corollary 2

Proof

Under the carbon emission allowances allocation mechanism, the industry’s optimal production and low-carbon investment are:

$$\begin{aligned}&{\bar{F}}\left( {{q^\mathrm{{*}}}} \right) = \frac{{ {c + {\theta ^ * }} + \delta {e_o}\left( {1 - \rho \left( {{\theta ^ * }} \right) } \right) }}{p}; \end{aligned}$$
(C.1)
$$\begin{aligned}&\delta {e_o}\rho '\left( {{\theta ^ * }} \right) = 1. \end{aligned}$$
(C.2)

To examine how those exogenous variables affect the optimal decisions, we introduce an exponential form of emission reduction rate, i.e., \(\rho \left( \theta \right) = 1 - {e^{ - \beta \theta }}\). Substituting it into Eq. (C.2), the optimal low-carbon investment of the industry is determined by

$$\begin{aligned} \rho '\left( {{\theta ^ * }} \right) = - {e^{ - \beta {\theta ^ * }}} \times \left( { - \beta } \right) = \beta {e^{ - \beta {\theta ^ * }}} = \frac{1}{{\delta {e_o}}}. \end{aligned}$$
(C.3)

By calculating, we have

$$\begin{aligned} {\theta ^ * } = \frac{{\ln \left( {\delta {e_o}\beta } \right) }}{\beta }. \end{aligned}$$
(C.4)

In the following, we take the derivatives of \({\theta ^*}\) with respect to the related parameters.

$$\begin{aligned}&\frac{{\partial {\theta ^ * }}}{{\partial {e_o}}} = \frac{1}{\beta } \times \frac{1}{{\delta {e_o}\beta }} \times \delta \beta = \frac{1}{{{e_o}\beta }} > 0; \end{aligned}$$
(C.5)
$$\begin{aligned}&\frac{{\partial {\theta ^ * }}}{{\partial \delta }} = \frac{1}{\beta } \times \frac{1}{{\delta {e_o}\beta }} \times {e_o}\beta = \frac{1}{{\beta \delta }} > 0. \end{aligned}$$
(C.6)

Substituting Eq. (C.4) into Eq. (C.1), the optimal production is determined by

$$\begin{aligned} {\bar{F}}\left( {{q^\mathrm{{*}}}} \right) = \frac{1}{p}\left( {c + \frac{{\ln \left( {\delta {e_o}\beta } \right) + 1}}{\beta }} \right) . \end{aligned}$$
(C.7)

Then, we take the derivatives of \({q ^*}\) with respect to the related parameters.

$$\begin{aligned}&\frac{{\partial {q^ * }}}{{\partial p}} = \frac{1}{{{p^2}f\left( {q^ * } \right) }}\left( {c + \frac{{\ln \left( {\delta {e_o}\beta } \right) + 1}}{\beta }} \right) > 0; \end{aligned}$$
(C.8)
$$\begin{aligned}&\frac{{\partial {q^ * }}}{{\partial c}} = \frac{1}{p} \times \left( { - \frac{1}{{f\left( {q^ * } \right) }}} \right) = - \frac{1}{{pf\left( {q^ * } \right) }} < 0; \end{aligned}$$
(C.9)
$$\begin{aligned}&\frac{{\partial {q^ * }}}{{\partial {e_o}}} = \frac{1}{p} \times \frac{1}{\beta } \times \frac{1}{{\delta {e_o}\beta }} \times \delta \beta \times \left( { - \frac{1}{{f\left( {q^ * } \right) }}} \right) = - \frac{1}{{p{e_o}\beta f\left( {q^ * } \right) }} < 0; \end{aligned}$$
(C.10)
$$\begin{aligned}&\frac{{\partial {q^ * }}}{{\partial \delta }} = \frac{1}{p} \times \frac{1}{\beta } \times \frac{1}{{\delta {e_o}\beta }} \times {e_o}\beta \times \left( { - \frac{1}{{f\left( {q^ * } \right) }}} \right) = - \frac{1}{{p\delta \beta f\left( {q^ * } \right) }} < 0. \end{aligned}$$
(C.11)

\(\square \)

Appendix D: Proof of Proposition 3

Proof

In this section, we simulate the entire industry with two firms. The carbon emission allowances per product depends on the average carbon reduction level of the industry, which has been shown in Eq. (14). Here, the expected sale of firm 1 is

$$\begin{aligned} S\left( {{q_1}} \right)= & {} E\left( {\lambda x \wedge {q_1}} \right) = \left\{ {\begin{array}{*{20}{c}} {{q_1},}&{}{\lambda x \ge {q_1}}\\ {\lambda x,}&{}{\lambda x < {q_1}} \end{array}} \right. = \int _0^{\frac{{{q_1}}}{\lambda }} {\lambda xf\left( x \right) dx} + \int _{\frac{{{q_1}}}{\lambda }}^{ + \infty } {{q_1}f\left( x \right) dx} \nonumber \\= & {} \lambda x \times F\left( x \right) \left| {\begin{array}{*{20}{c}} {\frac{{{q_1}}}{\lambda }}\\ 0 \end{array}} \right. - \int _0^{\frac{{{q_1}}}{\lambda }} {F\left( x \right) d\left( {\lambda x} \right) } + {q_1}F\left( x \right) \left| {\begin{array}{*{20}{c}} { + \infty }\\ {\frac{{{q_1}}}{\lambda }} \end{array}} \right. \nonumber \\= & {} {q_1}F\left( {\frac{{{q_1}}}{\lambda }} \right) - \int _0^{\frac{{{q_1}}}{\lambda }} {F\left( x \right) d\left( {\lambda x} \right) } + {q_1} - {q_1}F\left( {\frac{{{q_1}}}{\lambda }} \right) \nonumber \\= & {} {q_1} - \lambda \int _0^{\frac{{{q_1}}}{\lambda }} {F\left( x\right) dx}. \end{aligned}$$
(D.1)

The expected sale of firm 2 is

$$\begin{aligned} S\left( {{q_2}} \right)= & {} E\left[ {\left( {1 - \lambda } \right) x \wedge {q_2}} \right] = \left\{ {\begin{array}{*{20}{c}} {\left( {1 - \lambda } \right) x,}&{}{\left( {1 - \lambda } \right) x < {q_2}}\\ {{q_2},}&{}{\left( {1 - \lambda } \right) x \ge {q_2}} \end{array}} \right. \nonumber \\= & {} \int _0^{\frac{{{q_2}}}{{1 - \lambda }}} {\left( {1 - \lambda } \right) xf\left( x \right) dx} + \int _{\frac{{{q_2}}}{{1 - \lambda }}}^{ + \infty } {{q_2}f\left( x \right) dx} \nonumber \\= & {} \left( {1 - \lambda } \right) x \times F\left( x \right) \left| {\begin{array}{*{20}{c}} {\frac{{{q_2}}}{{1 - \lambda }}}\\ 0 \end{array}} \right. - \int _0^{\frac{{{q_2}}}{{1 - \lambda }}} {F\left( x \right) d\left( {\left( {1 - \lambda } \right) x} \right) } + {q_2}F\left( x \right) \left| {\begin{array}{*{20}{c}} { + \infty }\\ {\frac{{{q_2}}}{{1 - \lambda }}} \end{array}} \right. \nonumber \\= & {} \left( {1 - \lambda } \right) \frac{{{q_2}}}{{1 - \lambda }}F\left( {\frac{{{q_2}}}{{1 - \lambda }}} \right) - \left( {1 - \lambda } \right) \int _0^{\frac{{{q_2}}}{{1 - \lambda }}} {F\left( x \right) dx} + {q_2} - {q_2}F\left( {\frac{{{q_2}}}{{1 - \lambda }}} \right) \nonumber \\= & {} {q_2} - \left( {1 - \lambda } \right) \int _0^{\frac{{{q_2}}}{{1 - \lambda }}} {F\left( x \right) dx}. \end{aligned}$$
(D.2)

Then, we obtain the profit functions of two firms that have been presented in Eq. (16). The first-order conditions can be derived as:

$$\begin{aligned} \left\{ \begin{array}{l} \frac{{\partial {\pi _1}}}{{\partial {q_1}}} = p \left( {1 - F \left( {\frac{{{q_1}}}{\lambda }} \right) } \right) + \left[ {{p_e}{e_o} \left( {1 - \frac{\delta }{{{p_e}}}} \right) \left[ {\lambda {e^{ - {\beta _1}{\theta _1}}} + \left( {1 - \lambda } \right) {e^{ - {\beta _2}{\theta _2}}}} \right] - {p_e}{e_o}{e^{ - {\beta _1}{\theta _1}}} - c - {\theta _1}} \right] = 0;\\ \frac{{\partial {\pi _1}}}{{\partial {\theta _1}}} = \left[ { - {p_e}{e_o}\left( {1 - \frac{\delta }{{{p_e}}}} \right) \lambda {e^{ - {\beta _1}{\theta _1}}}{\beta _1} + {p_e}{e_o}{e^{ - {\beta _1}{\theta _1}}}{\beta _1} - 1} \right] {q_1} = 0;\\ \frac{{\partial {\pi _2}}}{{\partial {q_2}}} = p \left( {1 - F \left( {\frac{{{q_2}}}{{1 - \lambda }}} \right) } \right) + \left[ {{p_e}{e_o} \left( {1 - \frac{\delta }{{{p_e}}}} \right) \left[ {\lambda {e^{ - {\beta _1}{\theta _1}}} + \left( {1 - \lambda } \right) {e^{ - {\beta _2}{\theta _2}}}} \right] - {p_e}{e_o}{e^{ - {\beta _2}{\theta _2}}} - c - {\theta _2}} \right] = 0;\\ \frac{{\partial {\pi _2}}}{{\partial {\theta _2}}} = \left[ { - {p_e}{e_o}\left( {1 - \frac{\delta }{{{p_e}}}} \right) \left( {1 - \lambda } \right) {e^{ - {\beta _2}{\theta _2}}}{\beta _2} + {p_e}{e_o}{e^{ - {\beta _2}{\theta _2}}}{\beta _2} - 1} \right] {q_2} = 0. \end{array} \right. \nonumber \\ \end{aligned}$$
(D.3)

According to \(\frac{{\partial {\pi _1}}}{{\partial {\theta _1}}}=0\) and \(\frac{{\partial {\pi _2}}}{{\partial {\theta _2}}}=0\), we have

$$\begin{aligned} \left\{ \begin{array}{l} {p_e}{e_o}{\beta _1}{e^{ - {\beta _1}{\theta _1}}}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) = 1;\\ {p_e}{e_o}{\beta _2}{e^{ - {\beta _2}{\theta _2}}}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) = 1. \end{array} \right. \end{aligned}$$
(D.4)

Reducing the above equations, the optimal low-carbon investment of each firm can be derived as:

$$\begin{aligned} \left\{ \begin{array}{l} {{\theta _1} ^*} = \frac{{\ln \left( {{p_e}{e_o}{\beta _1}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) } \right) }}{{{\beta _1}}};\\ {{\theta _2} ^*} = \frac{{\ln \left( {{p_e}e{}_o{\beta _2}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) } \right) }}{{{\beta _2}}}. \end{array} \right. \end{aligned}$$
(D.5)

\(\square \)

Appendix E: Proofs of Corollaries in Section 5

1.1 E.1: Proof of Corollary 3

Proof

The carbon emission reduction rate of each firm has been given in Eq. (18). Based on the assumption in Sect. 3, we have \(0 \le {\rho _i}\left( {{\theta _i}} \right) < 1\). Hence, we can derive the boundary conditions of carbon price. From Eq. (18), we have

$$\begin{aligned}&0 < \frac{1}{{{e_o}{\beta _1}\left( {{p_e} - \lambda \left( {{p_e} - \delta } \right) } \right) }} \le 1; \end{aligned}$$
(E.1)
$$\begin{aligned}&0 < \frac{1}{{{e_o}{\beta _2}\left( {{p_e} - \left( {1 - \lambda } \right) \left( {{p_e} - \delta } \right) } \right) }} \le 1. \end{aligned}$$
(E.2)

Since \({1 - \frac{\delta }{{{p_e}}}} > 0\) and \(\mathrm{{\lambda }} \in \left[ {0,1} \right] \), the above inequations \(0 < \frac{1}{{{e_o}{\beta _1}\left( {{p_e} - \lambda \left( {{p_e} - \delta } \right) } \right) }}\) and \(0 < \frac{1}{{{e_o}{\beta _2}\left( {{p_e} - \left( {1 - \lambda } \right) \left( {{p_e} - \delta } \right) } \right) }}\) always hold.

From Eqs. (E.1) and (E.2), we observe that \({e_o}{\beta _1}\left( {{p_e} - \lambda \left( {{p_e} - \delta } \right) } \right) \ge 1\) and \({e_o}{\beta _2}\left( {{p_e} - \left( {1 - \lambda } \right) \left( {{p_e} - \delta } \right) } \right) \ge 1\). So the carbon price should satisfy the conditions presented as follows:

$$\begin{aligned} \begin{array}{l} {p_e} \ge \frac{1}{{1 - \lambda }}\left( {\frac{1}{{{e_o}{\beta _1}}} - \lambda \delta } \right) ;\\ {p_e} \ge \frac{1}{\lambda }\left( {\frac{1}{{{e_o}{\beta _2}}} - \left( {1 - \lambda } \right) \delta } \right) . \end{array} \end{aligned}$$
(E.3)

Thus we derive the Corollary 3. According to the above conditions, we also get

$$\begin{aligned} {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) }\ge & {} \frac{1}{{{p_e}{e_o}{\beta _1}}}> 0;\nonumber \\ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) }\ge & {} \frac{1}{{{p_e}e{}_o{\beta _2}}} > 0. \end{aligned}$$
(E.4)

\(\square \)

1.2 E.2: Proof of Corollary 4

Proof

By taking the derivatives of the firm 1’s optimal low-carbon investment with respect to the related parameters, we have

$$\begin{aligned} \frac{{\partial {{\theta _1} ^*}}}{{\partial \lambda }}= & {} \frac{1}{{{\beta _1}}} \times \frac{1}{{{p_e}{e_o}{\beta _1} \left[ {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} \times \left[ { - {p_e}{e_o}{\beta _1} \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] = - \frac{{1 - \frac{\delta }{{{p_e}}}}}{{{\beta _1} \left[ {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} < 0; \end{aligned}$$
(E.5)
$$\begin{aligned} \frac{{\partial {{\theta _1} ^*}}}{{\partial \delta }}= & {} \frac{1}{{{\beta _1}}} \times \frac{1}{{{p_e}{e_o}{\beta _1}\left[ {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} \times \frac{{\lambda {p_e}{e_o}{\beta _1}}}{{{p_e}}} = \frac{\lambda }{{{\beta _1}{p_e}\left[ {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} > 0; \end{aligned}$$
(E.6)
$$\begin{aligned} \frac{{\partial {{\theta _1} ^*}}}{{\partial {p_e}}}= & {} \frac{1}{{{\beta _1}}} \times \frac{1}{{{p_e}{e_o}{\beta _1}\left[ {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} \times \left( {1 - \lambda } \right) {e_o}{\beta _1} = \frac{{1 - \lambda }}{{{p_e}{\beta _1}\left[ {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} > 0; \end{aligned}$$
(E.7)
$$\begin{aligned} \frac{{\partial {{\theta _1} ^*}}}{{\partial {e_o}}}= & {} \frac{1}{{{\beta _1}}} \times \frac{1}{{{p_e}{e_o}{\beta _1}\left[ {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} \times {p_e}{\beta _1}\left[ {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] = \frac{1}{{{\beta _1}{e_o}}} > 0; \end{aligned}$$
(E.8)
$$\begin{aligned} \frac{{\partial {{\theta _1} ^*}}}{{\partial {\beta _1}}}= & {} \frac{{\frac{1}{{{p_e}{e_o}{\beta _1}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }} \times {p_e}{e_o}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) \times {\beta _1} - \ln \left( {{p_e}{e_o}{\beta _1}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) } \right) }}{{{\beta _1}^2}}\nonumber \\= & {} \frac{{1 - \ln \left( {{p_e}{e_o}{\beta _1}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) } \right) }}{{{\beta _1}^2}}; \end{aligned}$$
(E.9)
  1. (1)

    If \(\frac{1}{{{p_e}{e_o}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }} \le {\beta _1} < \frac{e}{{{p_e}{e_o}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }}\), then \(\frac{{\partial {{\theta _1} ^*}}}{{\partial {\beta _1}}} > 0\);

  2. (2)

    If \({\beta _1} \ge \frac{e}{{{p_e}{e_o}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }}\), then \(\frac{{\partial {{\theta _1} ^*}}}{{\partial {\beta _1}}} \le 0\).

Similarly, by taking the derivatives of the firm 2’s optimal low-carbon investment with respect to the related parameters, we have

$$\begin{aligned} \frac{{\partial {{\theta _2} ^*}}}{{\partial \lambda }}= & {} \frac{1}{{{\beta _2}}} \times \frac{1}{{{p_e}{e_o}{\beta _2}\left[ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} \times {p_e}{e_o}{\beta _2}\left( {1 - \frac{\delta }{{{p_e}}}} \right) = \frac{{1 - \frac{\delta }{{{p_e}}}}}{{{\beta _2}\left[ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} > 0; \end{aligned}$$
(B.10)
$$\begin{aligned} \frac{{\partial {{\theta _2} ^*}}}{{\partial \delta }}= & {} \frac{1}{{{\beta _2}}} \times \frac{1}{{{p_e}{e_o}{\beta _2} \left[ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} \times \frac{{\left( {1 - \lambda } \right) {p_e}{e_o}{\beta _2}}}{{{p_e}}} = \frac{{1 - \lambda }}{{{\beta _2}{p_e} \left[ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} > 0; \end{aligned}$$
(B.11)
$$\begin{aligned} \frac{{\partial {{\theta _2} ^*}}}{{\partial {p_e}}}= & {} \frac{1}{{{\beta _2}}} \times \frac{1}{{{p_e}{e_o}{\beta _2} \left[ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} \times \left( {{e_o}{\beta _2} - \left( {1 - \lambda } \right) {e_o}{\beta _2}} \right) = \frac{\lambda }{{{\beta _2}{p_e} \left[ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} > 0; \end{aligned}$$
(B.12)
$$\begin{aligned} \frac{{\partial {{\theta _2} ^*}}}{{\partial {e_o}}}= & {} \frac{1}{{{\beta _2}}} \times \frac{1}{{{p_e}{e_o}{\beta _2}\left[ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] }} \times {p_e}{\beta _2}\left[ {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right] = \frac{1}{{{\beta _2}{e_o}}} > 0; \end{aligned}$$
(B.13)
$$\begin{aligned} \frac{{\partial {{\theta _2} ^*}}}{{\partial {\beta _2}}}= & {} \frac{{\frac{1}{{{p_e}{e_o}{\beta _2}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }} \times {p_e}{e_o}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) \times {\beta _2} - \ln \left( {{p_e}{e_o}{\beta _2}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) } \right) }}{{{\beta _2}^2}}\nonumber \\= & {} \frac{{1 - \ln \left( {{p_e}{e_o}{\beta _2} \left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) } \right) }}{{{\beta _2}^2}}; \end{aligned}$$
(B.14)
  1. (1)

    If \(\frac{1}{{{p_e}{e_o}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }} \le {\beta _2} < \frac{e}{{{p_e}{e_o}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }}\), then \(\frac{{\partial {{\theta _2} ^*}}}{{\partial {\beta _2}}} > 0\);

  2. (2)

    If \({\beta _2} \ge \frac{e}{{{p_e}{e_o}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }}\), then \(\frac{{\partial {{\theta _2} ^*}}}{{\partial {\beta _2}}} \le 0\). \(\square \)

1.3 E.3: Proof of Corollary 5

Proof

By taking the derivatives of the critical point \({\hat{\beta }_1}\) with respect to the related parameters, we can get

$$\begin{aligned}&\frac{{\partial {{\hat{\beta }}_1}}}{{\partial {p_e}}} = \frac{{ - e{e_o}\left( {1 - \lambda } \right) }}{{{e_o}^2{{\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }^2}}} = \frac{{ - e\left( {1 - \lambda } \right) }}{{{e_o}{{\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }^2}}} < 0; \end{aligned}$$
(E.15)
$$\begin{aligned}&\frac{{\partial {{\hat{\beta }}_1}}}{{\partial \delta }} = \frac{{ - e{e_o}\lambda }}{{{e_o}^2{{\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }^2}}} = \frac{{ - e\lambda }}{{{e_o}{{\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }^2}}} < 0; \end{aligned}$$
(E.16)
$$\begin{aligned}&\frac{{\partial {{\hat{\beta }}_1}}}{{\partial {e_o}}} = \frac{{ - e\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }}{{{e_o}^2{{\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }^2}}} = \frac{{ - e}}{{{e_o}^2\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }} < 0; \end{aligned}$$
(E.17)
$$\begin{aligned}&\frac{{\partial {{\hat{\beta }}_1}}}{{\partial \lambda }} = \frac{{ - e{e_o}\left( { - {p_e} + \delta } \right) }}{{{e_o}^2{{\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }^2}}} = \frac{{ - e\left( {\delta - {p_e}} \right) }}{{{e_o}{{\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }^2}}} > 0. \end{aligned}$$
(E.18)

Then, by taking the derivatives of the critical point \({\hat{\beta }_2}\) with respect to the related parameters, we can get

$$\begin{aligned}&\frac{{\partial {{\hat{\beta }}_2}}}{{\partial {p_e}}} = \frac{{ - e{e_o}\lambda }}{{{e_o}^2{{\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }^2}}} = \frac{{ - e\lambda }}{{{e_o}{{\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }^2}}} < 0; \end{aligned}$$
(E.19)
$$\begin{aligned}&\frac{{\partial {{\hat{\beta }}_2}}}{{\partial \delta }} = \frac{{ - e{e_o}\left( {1 - \lambda } \right) }}{{{e_o}^2{{\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }^2}}} = \frac{{ - e\left( {1 - \lambda } \right) }}{{{e_o}{{\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }^2}}} < 0; \end{aligned}$$
(E.20)
$$\begin{aligned}&\frac{{\partial {{\hat{\beta }}_2}}}{{\partial {e_o}}} = \frac{{ - e\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }}{{{e_o}^2{{\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }^2}}} = \frac{{ - e}}{{{e_o}^2\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }} < 0; \end{aligned}$$
(E.21)
$$\begin{aligned}&\frac{{\partial {{\hat{\beta }}_2}}}{{\partial \lambda }} = \frac{{ - e{e_o}\left( {{p_e} - \delta } \right) }}{{{e_o}^2{{\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }^2}}} = \frac{{ - e\left( {{p_e} - \delta } \right) }}{{{e_o}{{\left( {\lambda {p_e} + \delta - \lambda \delta } \right) }^2}}} < 0. \end{aligned}$$
(E.22)

\(\square \)

1.4 E.4: Proof of Corollary 6

Proof

By taking the derivatives of the firm 1’s emission gap with respect to the related parameters, we have

$$\begin{aligned} \frac{{\partial \Delta {e_1}}}{{\partial {\beta _1}}}= & {} \frac{{ - {p_e}}}{{{p_e}^2{\beta _1}^2}} = - \frac{1}{{{p_e}{\beta _1}^2}} < 0; \end{aligned}$$
(E.23)
$$\begin{aligned} \frac{{\partial \Delta {e_1}}}{{\partial {\beta _2}}}= & {} - \frac{{\left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) }}{{{p_e}\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }}\left( { - \frac{1}{{{\beta _2}^2}}} \right) = \frac{{\left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) }}{{{\beta _2}^2\left( {\lambda {p_e} + \left( {1 - \lambda } \right) \delta } \right) }} > 0;\qquad \qquad \end{aligned}$$
(E.24)
$$\begin{aligned} \frac{{\partial \Delta {e_1}}}{{\partial \delta }}= & {} \frac{{\left( {1 - \lambda } \right) {\beta _2} \left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) + {{\left( {1 - \lambda } \right) }^2} \left( {1 - \frac{\delta }{{{p_e}}}} \right) {\beta _2}}}{{{p_e}^2{\beta _2}^2{{\left( {1 - \left( {1 - \lambda } \right) \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }^2}}} \nonumber \\= & {} \frac{{1 - \lambda }}{{{{\left( {\lambda {p_e} + \left( {1 - \lambda } \right) \delta } \right) }^2} {\beta _2}}} > 0; \end{aligned}$$
(E.25)
$$\begin{aligned} \frac{{\partial \Delta {e_1}}}{{\partial \lambda }}= & {} \frac{{\left( {1 - \frac{\delta }{{{p_e}}}} \right) {p_e} \left( {\lambda + \left( {1 - \lambda } \right) \frac{\delta }{{{p_e}}}} \right) + {{\left( {1 - \frac{\delta }{{{p_e}}}} \right) }^2} \left( {1 - \lambda } \right) {p_e}}}{{{p_e}^2{\beta _2}{{\left( {\lambda + \left( {1 - \lambda } \right) \frac{\delta }{{{p_e}}}} \right) }^2}}} \nonumber \\= & {} \frac{{{p_e} - \delta }}{{{{\left( {\lambda {p_e} + \left( {1 - \lambda } \right) \delta } \right) }^2}{\beta _2}}} > 0. \end{aligned}$$
(E.26)

Then, by taking the derivatives of the firm 2’s emission gap with respect to the related parameters, we have

$$\begin{aligned} \frac{{\partial \Delta {e_2}}}{{\partial {\beta _2}}}= & {} \frac{{ - {p_e}}}{{{p_e}^2{\beta _2}^2}} = - \frac{1}{{{p_e}{\beta _2}^2}} < 0; \end{aligned}$$
(E.27)
$$\begin{aligned} \frac{{\partial \Delta {e_2}}}{{\partial {\beta _1}}}= & {} - \frac{{\lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) }}{{{p_e}\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }}\left( { - \frac{1}{{{\beta _1}^2}}} \right) = \frac{{\lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) }}{{{\beta _1}^2\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }} > 0; \end{aligned}$$
(E.28)
$$\begin{aligned} \frac{{\partial \Delta {e_2}}}{{\partial \delta }}= & {} \frac{{\lambda \left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) + {\lambda ^2}\left( {1 - \frac{\delta }{{{p_e}}}} \right) }}{{{p_e}^2{\beta _1}{{\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }^2}}} = \frac{\lambda }{{{\beta _1}{{\left( {{p_e} - \lambda {p_e} + \lambda \delta } \right) }^2}}} > 0;\qquad \end{aligned}$$
(E.29)
$$\begin{aligned} \frac{{\partial \Delta {e_2}}}{{\partial \lambda }}= & {} \frac{{ - \left( {1 - \frac{\delta }{{{p_e}}}} \right) {p_e} \left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) - \lambda {p_e}{{\left( {1 - \frac{\delta }{{{p_e}}}} \right) }^2}}}{{{p_e}^2{\beta _1}{{\left( {1 - \lambda \left( {1 - \frac{\delta }{{{p_e}}}} \right) } \right) }^2}}} \nonumber \\= & {} \frac{{ - \left( {{p_e} - \delta } \right) }}{{{\beta _1}{{\left( {{p_e} - {p_e}\lambda + \lambda \delta } \right) }^2}}} < 0. \end{aligned}$$
(E.30)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Qian, J., Liu, T. et al. Emission allowance allocation mechanism design: a low-carbon operations perspective. Ann Oper Res 291, 247–280 (2020). https://doi.org/10.1007/s10479-018-2922-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2922-z

Keywords