Single-facility scheduling by logic-based Benders decomposition | Annals of Operations Research Skip to main content
Log in

Single-facility scheduling by logic-based Benders decomposition

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Logic-based Benders decomposition can combine mixed integer programming and constraint programming to solve planning and scheduling problems much faster than either method alone. We find that a similar technique can be beneficial for solving pure scheduling problems as the problem size scales up. We solve single-facility non-preemptive scheduling problems with time windows and long time horizons. The Benders master problem assigns jobs to predefined segments of the time horizon, where the subproblem schedules them. In one version of the problem, jobs may not overlap the segment boundaries (which represent shutdown times, such as weekends), and in another version, there is no such restriction. The objective is to find feasible solutions, minimize makespan, or minimize total tardiness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Algorithm 8

Similar content being viewed by others

References

  • Aggoun, A., & Vazacopoulos, A. (2004). Solving sports scheduling and timetabling problems with constraint programming. In S. Butenko, J. Gil-Lafuente, & P. M. Pardalos (Eds.), Economics, management and optimization in sports (pp. 243–264). New York: Springer.

    Chapter  Google Scholar 

  • Babonneau, F., Beltran, C., Haurie, A., Tadonki, C., & Vial, J. P. (2007). Proximal-ACCPM: A versatile oracle based optimization method. In E. J. Kontoghiorghes & C. Gatu (Eds.), Advances in computational management science: Vol. 9. Optimisation, econometric and financial analysis (pp. 69–92). New York: Springer.

    Google Scholar 

  • Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling: applying constraint programming to scheduling problems. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Barlatta, A. Y., Cohn, A. M., & Gusikhinc, O. (2010). A hybridization of mathematical programming and dominance-driven enumeration for solving shift-selection and task-sequencing problems. Computers & Operations Research, 37, 1298–1307.

    Article  Google Scholar 

  • Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.

    Article  Google Scholar 

  • Benini, L., Bertozzi, D., Guerri, A., & Milano, M. (2005). Allocation and scheduling for MPSoCs via decomposition and no-good generation. In Lecture notes in computer science: Vol. 3709. Principles and practice of constraint programming (CP 2005) (pp. 107–121). Berlin: Springer.

    Chapter  Google Scholar 

  • Bent, R., & Van Hentenryck, P. (2010). Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows. In D. Cohen (Ed.), Lecture notes in computer science: Vol. 6308. Principles and practice of constraint programming (CP 2010) (pp. 99–113). Berlin: Springer.

    Chapter  Google Scholar 

  • Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., & Trinquet, Y. (2004). Decomposition and learning for a hard real time task allocation problem. In M. Wallace (Ed.), Lecture notes in computer science: Vol. 3258. Principles and practice of constraint programming (CP 2004) (pp. 153–167). Berlin: Springer.

    Chapter  Google Scholar 

  • Chu, Y., & Xia, Q. (2004). Generating Benders cuts for a class of integer programming problems. In J. C. Régin & M. Rueher (Eds.), Lecture notes in computer science: Vol. 3011. Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR 2004) (pp. 127–141). Berlin: Springer.

    Chapter  Google Scholar 

  • Codato, G., & Fischetti, M. (2006). Combinatorial Benders’ cuts for mixed-integer linear programming. Operations Research, 54, 756–766.

    Article  Google Scholar 

  • Corréa, A. I., Langevin, A., & Rousseau, L. M. (2004). Dispatching and conflict-free routing of automated guided vehicles: a hybrid approach combining constraint programming and mixed integer programming. In J. C. Régin & M. Rueher (Eds.), Lecture notes in computer science: Vol. 3011. Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR 2004) (pp. 370–378). Berlin: Springer.

    Chapter  Google Scholar 

  • Fazel-Zarandi, M. M., & Beck, J. C. (2009). Solving a location-allocation problem with logic-based Benders’ decomposition. In I. P. Gent (Ed.), Lecture notes in computer science: Vol. 5732. Principles and practice of constraint programming (CP 2009) (pp. 344–351). Berlin: Springer.

    Chapter  Google Scholar 

  • French, S. (1982). Sequencing and scheduling. New York: Wiley.

    Google Scholar 

  • Fulkerson, D. R. (1971). Blocking and anti-blocking pairs of polyhedra. Mathematical Programming, 1, 168–194.

    Article  Google Scholar 

  • Geoffrion, A. M. (1972). Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10, 237–260.

    Article  Google Scholar 

  • Harjunkoski, I., & Grossmann, I. E. (2001). A decomposition approach for the scheduling of a steel plant production. Computers & Chemical Engineering, 25, 1647–1660.

    Article  Google Scholar 

  • Harjunkoski, I., & Grossmann, I. E. (2002). Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Computers & Chemical Engineering, 26, 1533–1552.

    Article  Google Scholar 

  • Hooker, J. N. (1995). Logic-based Benders decomposition. In INFORMS national meeting (INFORMS 1995).

    Google Scholar 

  • Hooker, J. N. (1996). Inference duality as a basis for sensitivity analysis. In E. C. Freuder (Ed.), Lecture notes in computer science: Vol. 1118. Principles and practice of constraint programming (CP 1996) (pp. 224–236). Berlin: Springer.

    Chapter  Google Scholar 

  • Hooker, J. N. (2000). Logic-based methods for optimization: combining optimization and constraint satisfaction. New York: Wiley.

    Book  Google Scholar 

  • Hooker, J. N. (2004). A hybrid method for planning and scheduling. In M. Wallace (Ed.), Lecture notes in computer science: Vol. 3258. Principles and practice of constraint programming (CP 2004) (pp. 305–316). Berlin: Springer.

    Chapter  Google Scholar 

  • Hooker, J. N. (2005a). A hybrid method for planning and scheduling. Constraints, 10, 385–401.

    Article  Google Scholar 

  • Hooker, J. N. (2005b). Planning and scheduling to minimize tardiness. In Lecture notes in computer science: Vol. 3709. Principles and practice of constraint programming (CP 2005) (pp. 314–327). Berlin: Springer.

    Chapter  Google Scholar 

  • Hooker, J. N. (2006). An integrated method for planning and scheduling to minimize tardiness. Constraints, 11, 139–157.

    Article  Google Scholar 

  • Hooker, J. N. (2007a). Integrated methods for optimization. Berlin: Springer.

    Google Scholar 

  • Hooker, J. N. (2007b). Planning and scheduling by logic-based Benders decomposition. Operations Research, 55, 588–602.

    Article  Google Scholar 

  • Hooker, J. N., & Ottosson, G. (2003). Logic-based Benders decomposition. Mathematical Programming, 96, 33–60.

    Google Scholar 

  • Hooker, J. N., & Yan, H. (1995). Logic circuit verification by Benders decomposition. In V. Saraswat & P. Van Hentenryck (Eds.), Principles and practice of constraint programming: the newport papers (pp. 267–288). Cambridge: MIT Press.

    Google Scholar 

  • Jain, V., & Grossmann, I. E. (2001). Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS Journal on Computing, 13, 258–276.

    Article  Google Scholar 

  • Jeroslow, R. G. (1987). Representability in mixed integer programming, I: Characterization results. Discrete Applied Mathematics, 17, 223–243.

    Article  Google Scholar 

  • Keha, A. B., Khowala, K., & Fowler, J. W. (2009). Mixed integer programming formulations for single machine scheduling problems. Computers & Industrial Engineering, 56, 357–367.

    Article  Google Scholar 

  • Koulamas, C. (2010). The single-machine total tardiness scheduling problem: review and extensions. European Journal of Operational Research, 202, 1–7.

    Article  Google Scholar 

  • Maravelias, C. T. (2006). A decomposition framework for the scheduling of single- and multi-stage processes. Computers & Chemical Engineering, 30, 407–420.

    Article  Google Scholar 

  • Maravelias, C. T., & Grossmann, I. E. (2004a). A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipurpose batch plants. Computers & Chemical Engineering, 28, 1921–1949.

    Article  Google Scholar 

  • Maravelias, C. T., & Grossmann, I. E. (2004b). Using MILP and CP for the scheduling of batch chemical processes. In J. C. Régin & M. Rueher (Eds.), Lecture notes in computer science: Vol. 3011. Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR 2004) (pp. 1–20). Berlin: Springer.

    Chapter  Google Scholar 

  • Padberg, M. (1973). On the facial structure of set packing polyhedra. Mathematical Programming, 5, 199–215.

    Article  Google Scholar 

  • Pinedo, M. (1995). Scheduling: theory, algorithms, and systems. New York: Prentice Hall.

    Google Scholar 

  • Rasmussen, R. (2008). Scheduling a triple round robin tournament for the best Danish soccer league. European Journal of Operational Research, 185, 795–810.

    Article  Google Scholar 

  • Rasmussen, R., & Trick, M. A. (2007). A Benders approach to the constrained minimum break problem. European Journal of Operational Research, 177, 198–213.

    Article  Google Scholar 

  • Sadykov, R., & Wolsey, L. A. (2006). Integer programming and constraint programming in solving a multimachine assignment scheduling problem with deadlines and release dates. INFORMS Journal on Computing, 18, 209–217.

    Article  Google Scholar 

  • Tarim, S. A., & Miguel, I. (2006). A hybrid Benders’ decomposition method for solving stochastic constraint programs with linear recourse. In B. Hnich, M. Carlsson, F. Fages, & F. Rossi (Eds.), Lecture notes in computer science: Vol. 3978. Recent advances in constraints (CSCLP 2005) (pp. 133–148). Berlin: Springer.

    Chapter  Google Scholar 

  • Terekhov, D., Beck, J. C., & Brown, K. N. (2005). Solving a stochastic queueing design and control problem with constraint programming. In Proceedings of the 22nd national conference on artificial intelligence (AAAI 2005) (pp. 261–266).

    Google Scholar 

  • Thorsteinsson, E. (2001). Branch and check: a hybrid framework integrating mixed integer programming and constraint logic programming. In T. Walsh (Ed.), Lecture notes in computer science: Vol. 2239. Principles and practice of constraint programming (CP 2001) (pp. 16–30). Berlin: Springer.

    Chapter  Google Scholar 

  • Timpe, C. (2002). Solving planning and scheduling problems with combined integer and constraint programming. OR-Spektrum, 24, 431–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Hooker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coban, E., Hooker, J.N. Single-facility scheduling by logic-based Benders decomposition. Ann Oper Res 210, 245–272 (2013). https://doi.org/10.1007/s10479-011-1031-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-1031-z

Keywords

Navigation