Financial market forecasting using a two-step kernel learning method for the support vector regression | Annals of Operations Research Skip to main content
Log in

Financial market forecasting using a two-step kernel learning method for the support vector regression

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we propose a two-step kernel learning method based on the support vector regression (SVR) for financial time series forecasting. Given a number of candidate kernels, our method learns a sparse linear combination of these kernels so that the resulting kernel can be used to predict well on future data. The L 1-norm regularization approach is used to achieve kernel learning. Since the regularization parameter must be carefully selected, to facilitate parameter tuning, we develop an efficient solution path algorithm that solves the optimal solutions for all possible values of the regularization parameter. Our kernel learning method has been applied to forecast the S&P500 and the NASDAQ market indices and showed promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bach, F., Lanckriet, G., & Jordan, M. (2004). Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the 21st international conference on machine learning (p. 6).

  • Bradley, P., & Mangasarian, O. (1998). Feature selection via concave minimization and support vector machines. In Machine learning proceedings of the fifteenth international conference (pp. 82–90).

  • Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics, 37, 373–384.

    Article  Google Scholar 

  • Cao, L., & Tay, F. (2001). Financial forecasting using support vector machines. Neural Computing and Applications, 10, 184–192.

    Article  Google Scholar 

  • Cao, L., & Tay, F. (2003). Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks, 14, 1506–1518.

    Article  Google Scholar 

  • Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46, 131–159.

    Article  Google Scholar 

  • Cristianini, N., Kandola, J., Elisseeff, A., & Taylor, J. (2006). On kernel target alignment. Innovations in machine learning: theory and applications, Berlin: Springer.

    Google Scholar 

  • Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32, 407–499.

    Article  Google Scholar 

  • Fama, E. (1970). Efficient capital markets: a review of theory and empirical work. Journal of Finance, 25, 383–417.

    Article  Google Scholar 

  • Fama, E. (1991). Efficient capital markets: II. Journal of Finance, 46, 1575–1617.

    Article  Google Scholar 

  • Fan, R., Chen, P., & Lin, C. (2005). Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6, 1889–1918.

    Google Scholar 

  • Friedrichs, F., & Igel, C. (2005). Evolutionary tuning of multiple SVM parameters. Neurocomputing, 64, 107–117.

    Article  Google Scholar 

  • Fung, G., Dundar, M., Bi, J., & Rao, B. (2004). A fast iterative algorithm for fisher discriminant using heterogeneous kernels. In Proceedings of the 21st international conference on machine learning (p. 40).

  • Gestel, T., Suykens, J., Baestaens, D., Lambrechts, A., Lanckriet, G., Vandaele, B., Moor, B., & Vandewalle, J. (2001). Financial time series prediction using least squares support vector machines within the evidence framework. IEEE Transactions on Neural Networks, 12, 809–821.

    Article  Google Scholar 

  • Gunter, L., & Zhu, J. (2006). Computing the solution path for the regularized support vector regression. In Advances in neural information processing systems (pp. 483–490).

  • Hastie, T., Rosset, S., Tibshirani, R., & Zhu, J. (2004). The entire regularization path for the support vector machine. Journal of Machine Learning Research, 5, 1391–1415.

    Google Scholar 

  • Hirshleifer, D. (2001). Investor psychology and asset pricing. The Journal of Finance, 4, 1533.

    Article  Google Scholar 

  • Huang, W., Nakamori, Y., & Wang, S. (2005). Forecasting stock market movement direction with using support vector machine. Computers and Operations Research, 32, 2513–2522.

    Article  Google Scholar 

  • Keerthi, S., Sindhwani, V., & Chapelle, O. (2007). An efficient method for gradient-based adaptation of hyperparameters in SVM models. In Advances in neural information processing systems (pp. 217–224).

  • Kim, K. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55, 307–319.

    Article  Google Scholar 

  • Kim, S., Magnani, A., & Boyd, S. (2006). Optimal kernel selection in kernel fisher discriminant analysis. In Proceedings of the 23rd international conference on machine learning (pp. 465–472).

  • Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., & Jordan, M. (2004). Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72.

    Google Scholar 

  • Lo, A., & MacKinlay, C. (2001). A non-random walk down wall street. Princeton: Princeton University Press.

    Google Scholar 

  • Lo, A., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation. Journal of Finance, 55, 1705–1765.

    Article  Google Scholar 

  • Malkiel, J. (1973). A random walk down wall street. New York: W.W. Norton & Company.

    Google Scholar 

  • Nguyen, H., Ohn, S., & Choi, W. (2007). Combined kernel function for support vector machine and learning method based on evolutionary algorithm. In Proceedings of the 11th international conference on neural information processing (pp. 1273–1278).

  • Ong, C., Smola, A., & Williamson, R. (2005). Learning the kernel with hyperkernels. Journal of Machine Learning Research, 6, 1043–1071.

    Google Scholar 

  • Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods—support vector learning. Cambridge: MIT Press.

    Google Scholar 

  • Rosset, S., & Zhu, J. (2007). Piecewise linear regularized solution paths. The Annals of Statistics, 35, 1012–1030.

    Article  Google Scholar 

  • Smola, A., & Schoelkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199–222.

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society, Series B, 58, 267–288.

    Google Scholar 

  • Vapnik, V. (1995). The nature of statistical learning theory. Berlin: Springer.

    Google Scholar 

  • Wang, G., Yeung, D., & Lochovsky, F. (2007). A kernel path algorithm for support vector machines. In Proceedings of the 24th international conference on machine learning (pp. 951–958).

  • Wang, X., Chen, S., Lowe, D., & Harris, C. (2006). Sparse support vector regression based on orthogonal forward selection for the generalised kernel model. Neurocomputing, 70, 462–474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhu.

Additional information

L. Wang will join Barclays Global Investors, San Francisco, CA 94105, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhu, J. Financial market forecasting using a two-step kernel learning method for the support vector regression. Ann Oper Res 174, 103–120 (2010). https://doi.org/10.1007/s10479-008-0357-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0357-7

Keywords

Navigation