Mixed integer programming: A historical perspective with Xpress-MP | Annals of Operations Research
Skip to main content

Mixed integer programming: A historical perspective with Xpress-MP

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  • Ashford, R.W., P. Connard, and R.C. Daniel. (1992). “Experiments in Solving Mixed Integer Programming Problems on a Small Array of Transputers.” Journal of the Operational Research Society, 43(5), 519–531.

    Article  Google Scholar 

  • Ashford, R.W. and R.C. Daniel. (1989). “Element Pools and Numeric Co-Processors for Linear Programming on Personal Computers.” Journal of the Operational Research Society, 40(6), 591–596.

    Article  Google Scholar 

  • Ashford, R.W. and R.C. Daniel. (1992). “Some Lessons in Solving Practical Integer Programs.” Journal of the Operational Research Society, 43(5), 425–433.

    Article  Google Scholar 

  • Beale, E.M.L. (1968). Mathematical Programming in Practice. Pitman, London.

  • Brearley, A.L., G. Mitra, and H.P., Williams. (1975). “Analysis of Mathematical Programming Problems Prior to Applying the Simplex Method.” Mathematical Programming, 8, 54–83.

    Article  Google Scholar 

  • Dash Optimization (2006). “Xpress-MP Optimizer Reference Manual”, Dash Optimization Limited, Blisworth House, Church Lane, Blisworth, Nothants NN7 3BX, UK.

  • Fischetti, M. and A. Lodi. (2003). “Local Branching.” Mathematical Programming, 98, 23–47.

    Article  Google Scholar 

  • Forrest, J.J.H, J.P.H., Hirst, and J.A. Tomlin. (1972). “Practical Solution of Large Mixed Integer Programming Problems with UMPIRE.” Management Science, 20, 736–743.

    Google Scholar 

  • Forrest, J.J.H. and J.A. Tomlin. (1972). “Updating the Triangular Factors of the Basis to Maintain Sparsity in the Product form Simplex Method.” Mathematical Programming, 2, 263–278.

    Article  Google Scholar 

  • Gay, D. (1985). “Electronic Mail Distribution of Linear Programming Test Problems.” Mathematical Programming Society COAL Newsletter, 13, 10–12.

    Google Scholar 

  • Glover, F. and M. Laguna. (1997a). “General Purpose Heuristics For Integer Programming: Part I.” Journal of Heuristics, 2, 343–358.

    Article  Google Scholar 

  • Glover, F. and M. Laguna. (1997b). “General Purpose Heuristics For Integer Programming: Part II.” Journal of Heuristics, 3, 161–179.

    Article  Google Scholar 

  • Gomory, R.E. (1960). “An Algorithm for the Mixed Integer Problem.” Technical Report RM-2597, The Rand Corporation.

  • Guignard, M. and K. Spielberg. (1981). “Logical Reduction Methods in Zero-one Programming: Minimal Preferred Inequalities.” Operations Research, 29, 49–74.

    Article  Google Scholar 

  • IBM (1988). “Mathematical Programming System Extended/370 (MPSX/370) Version 2 User Guide.” IBM document, SH19–6553–0.

  • Hall, J.A.J. and K.I.M. McKinnon. (2004). “Hyper-Sparsity in the Revised Simplex Method and how to Exploit it.” Submitted to Computational Optimization and Applications.

  • Heipcke, S. (1999). “Comparing Constraint Programming and Mathematical Programming Approaches to Discrete Optimisation. The Change Problem.” Journal of the Operational Research Society, 50(6), 581–595.

    Article  Google Scholar 

  • Land, A.H. and A.G. Doig. (1960). “An Automatic Method for Solving Discrete Programming Problems.” Econometrica, 28, 497–520.

    Article  Google Scholar 

  • Laundy, R.S. (1999). “Implementation of Parallel Branch-and-Bound Algorithms in Xpress-MP.” In: Operational Research in Industry, ed: Ciriani, Gliozzi, Johnson and Tadei, MacMillan, London.

  • Lustig, I.J., R.E. Marsten, and D.F., Shanno. (1991). “Computational Experience with a Primal-Dual Interior Point Method for Linear Programming.” Linear Algebra and Its Applications, 152, 191–222.

    Google Scholar 

  • Meszaros, C. (1997). “On free Variables in Interior Point Methods.” Optimization Methods and Software, 9, 121–139.

    Google Scholar 

  • Moore, G.E. (1965). “Cramming More Components onto Integrated Circuits.” Electronics, 38 (8).

  • Reid, J.K. (1982). “A Sparsity-exploiting Variant of the Bartels-Golub Decomposition for Linear Programming Bases.” Mathematical Programming, 24, 55–69.

    Article  Google Scholar 

  • van Roy, T. and L.A., Wolsey. (1986). “Solving Mixed 0–1 Programs by Automatic Reformulation.” Operations Research, 35, 45–57.

    Google Scholar 

  • Spielberg, K. and M. Guignard. (2000). “A Sequential (quasi) hot Start Method for BB (0,1) Mixed Integer Programming.” Presented at the 17th International Symposium on Mathematical Programming, Atlanta, GA, August 2000.

  • Suhl, U.H. and L.M., Suhl. (1990). “Computing Sparse LU Factorizations for Large-Scale linear Programming Bases.” ORSA Journal on Computing, 2(4), 325–335.

    Google Scholar 

  • Wolsey, L.A. (1990). “Valid Inequalities for 0–1 Knapsacks and MIPS with Generalised Upper Bound Constraints.” Discrete Applied Mathematics, 29, 251–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ashford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashford, R. Mixed integer programming: A historical perspective with Xpress-MP. Ann Oper Res 149, 5–17 (2007). https://doi.org/10.1007/s10479-006-0092-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-006-0092-x

Keywords