Preface | Annals of Operations Research
Skip to main content

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  • Bertrand, J. (1883). “Review of Walras's Théorie Mathématique de la Richesse Sociale and Cournot's Recherches sur les Pricnipe Mathématiques de la Théorie des Richesses.” Journal des Savants (September), 499–508, translated by M. Chevaillier and reprinted in J. Magnon de Bornier (1992). “The ‘Cournot-Bertrand Debate’: A Historical Perspective.” History of Political Economy24, 623–656.

  • Borel, E. (1927). “Sur les Systémes de Formes Linéaires á Déterminant Symmétrique Gauche et la Théorie Générale du Jeu.” Comptes Rendus de l' Académie des Sciences 184, 52–53. Translated by L.J. Savage (1953). “On Systems of Linear Forms of Skew Symmetric Determinant and the General Theory of Play.” Econometrica 21, 116–117.

    Google Scholar 

  • Brouwer, L.E.J. (1912). “über Abbildung von Mannigfaltigkeiten.” Mathematische Annalen 71, 97–115.

    Article  Google Scholar 

  • Cournot, A.A. (1838). Recherches sur les Pricnipe Mathématiques de la Théorie des Richesses. Paris: Librairie des Sciences Politiques et Sociales, M. Riviére & Cie. Translated by N.T. Bacon (1897, 1927). Researches into the Mathematical Principles of the Theory of Wealth. New York: Macmillan.

  • Dresher, M., A.W. Tucker, and P. Wolfe (eds.) (1957). Contributions to the Theory of Games III (Annals of Mathematics Studies 39). Princeton: Princeton University Press.

    Google Scholar 

  • Dresher, M., L.S. Shapley, and A.W. Tucker (eds.) (1964). Advances in Game Theory (Annals of Mathematics Studies 52). Princeton: Princeton University Press.

    Google Scholar 

  • Edgeworth, F. Y. (1881). Mathematical Psychics. London: Paul Kegan.

    Google Scholar 

  • Farkas, J. (1902). “Theorie der Einfachen Ungleichungen.” Journal für Reine und Angewandte Mathematik 124, 1–27.

    Article  Google Scholar 

  • Harsanyi, J.C. (1967, 1968). “Games with Incomplete Information Playes by ‘Bayesian’ Players.” I, II, and III. Management Science 14, 159–182, 320–334, 486–502.

    Article  Google Scholar 

  • Kuhn, H.W. (1953). “Extensive Games and the Problem of Information.” In H.W. Kuhn and A.W. Tucker (eds.), pp. 193–216.

  • Kuhn, H.W. and A.W. Tucker (eds.) (1950). Contributions to the Theory of Games I. (Annals of Mathematics Studies 24). Princeton: Princeton University Press.

    Google Scholar 

  • Kuhn, H.W. and A.W. Tucker (eds.) (1953). Contributions to the Theory of Games II. (Annals of Mathematics Studies 28). Princeton: Princeton University Press.

    Google Scholar 

  • Lucas, W.F. (1969). “The Proof that a Game May Not Have a Solution.” Transactions of the American Mathematical Society 136, 219–229.

    Article  Google Scholar 

  • Luce, R.D. and A.W. Tucker (eds.). (1958). Contributions to the Theory of Games IV (Annals of Mathematics Studies 40). Princeton: Princeton University Press.

    Google Scholar 

  • Nash, J.F. (1950a). “The Bargaining Problem.” Econometrica 18, 155–162.

    Google Scholar 

  • Nash, J.F. (1950b). “Equilibrium Points in n-Person Games.” Proceedings of the National Acadmy of Sciences 36, 48–49.

    Google Scholar 

  • Shapley, L.S. (1953). “A Value for n-Person Games.” In H.W. Kuhn, and A.W. Tucker (eds.), pp. 307–318.

  • von Neumann, J. (1928). “Zur Theorie der Gesellschaftsspiele.” Mathematische Annalen 100, 295–320.

    Article  Google Scholar 

  • von Neumann, J. and O. Morgenstern (1944). Theory of Games and Economic Behavior. Princeton: Princeton University Press.

    Google Scholar 

  • Wald, A. (1945). “Generalization of a Theorem by von Neumann Concerning Zero-Sum Two-Person Games.” Annals of Mathematics 46, 281–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilbao, J.M., Morgan, J. & Peters, H. Preface. Ann Oper Res 137, 17–19 (2005). https://doi.org/10.1007/s10479-005-2241-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-005-2241-z