On matrices and K-relations | Annals of Mathematics and Artificial Intelligence Skip to main content
Log in

Abstract

We show that the matrix query language MATLANG corresponds to a natural fragment of the positive relational algebra on K-relations. The fragment is defined by introducing a composition operator and restricting K-relation arities to 2. We then proceed to show that MATLANG can express all matrix queries expressible in the positive relational algebra on K-relations, when intermediate arities are restricted to 3. Thus we offer an analogue, in a model with numerical data, to the situation in classical logic, where the algebra of binary relations is equivalent to first-order logic with three variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)

  2. Abo Khamis, M., Ngo, H., Rudra, A.: FAQ: Questions asked frequently. In: Milo, T., Tan, W. (eds.) Proceedings 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Databases, pp. 13–28, San Francisco (2016)

  3. Abo Khamis, M., Ngo, H., Rudra, A.: Juggling functions inside a database. SIGMOD Record 46(1), 6–13 (2017)

    Article  Google Scholar 

  4. Brijder, R., Geerts, F., Van den Bussche, J., Weerwag, T.: On the expressive power of query languages for matrices. In: Kimelfeld, B., Amsterdamer, Y. (eds.) Proceedings 21st International Conference on Database Theory, LIPIcs vol. 98, pp. 10:1–10:17, Vienna. Schloss Dagstuhl-Leibniz Center for Informatics (2018)

  5. Brijder, R., Gyssens, M., Van den Bussche, J.: On matrices and K-relations. In: Herzig, A., Kontinen, J. (eds.) Proceedings 11th International Symposium on Foundations of Information and Knowledge Systems, Lecture Notes in Computer Science, vol. 12012, pp. 42–57. Dortmund, Springer (2020)

  6. Geerts, F.: On the expressive power of linear algebra on graphs. In: Barcelo, P., Calautti, M. (eds.) Proceedings 22nd International Conference on Database Theory, LIPIcs vol. 127, pp. 7:1–7:19, Lisbon. Schloss Dagstuhl–Leibniz Center for Informatics (2019)

  7. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Libkin, L. (ed.) Proceedings 26th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp 31–40, Beijing (2007)

  8. Hutchison, D., Howe, B., Suciu, D.: LaraDB: A minimalist kernel for linear and relational algebra computation. In: Afrati, F., Sroka, J. (eds.) Proceedings 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, pp 2:1–2:10 (2017)

  9. Jananthan, H., Zhou, Z., Gadepally, V., Hutchison, D., Kim, S., Kepner, J.: Polystore mathematics of relational algebra. In: Nie, J.Y., Obradovic, Z., Suzumura, T., Ghosh, R., Nambiar, R., Wang, C., Zang, H., Baeza-Yates, R., Hu, X., Kepner, J., Cuzzocrea, A., Tang, J., Toyoda, M. (eds.) Proceedings 2017 IEEE International Conference on Big Data, pp. 3180–3189, Boston (2017)

  10. Joglekar, M., Puttagunta, R., Ré, C.: AJAR: Aggregations and joins over annotated relations. In: Milo, T., Tan, W. (eds.) Proceedings 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Databases, pp. 91–106, San Francisco (2016)

  11. Libkin, L.: Expressive power of SQL. Theor. Comput. Sci. 296(3), 379–404 (2003)

    Article  MathSciNet  Google Scholar 

  12. Luo, S., Gao, Z., Gubanov, M., Perez, L., Jermaine, C.: Scalable linear algebra on a relational database system. SIGMOD Record 47(1), 24–31 (2018)

    Article  Google Scholar 

  13. Maddux, R.: The origin of relation algebras in the development and axiomatization of the calculus of relations. Stud. Log. 50(3/4), 421–455 (1991)

    Article  MathSciNet  Google Scholar 

  14. Marx, M., Venema, Y.: Multi-Dimensional Modal Logic. Springer (1997)

  15. Otto, M.: Bounded Variable Logics and Counting: A Study in Finite Models, Lecture Notes in Logic, vol. 9. Springer (1997)

  16. Pratt, V.: Origins of the calculus of binary relations. In: Proceedings 7th Annual IEEE Symposium on Logic in Computer Science, pp 248–254, Santa Cruz (1992)

  17. Tarski, A.: On the calculus of relations. J. Symb. Log. 6, 73–89 (1941)

    Article  MathSciNet  Google Scholar 

  18. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, AMS Colloquium Publications, vol. 41. American Mathematical Society (1987)

  19. Van den Bussche, J.: FO3 and the algebra of binary relations. https://databasetheory.org/node/94, Retrieved 22 July 2019

  20. Yan, Z., Tannen, V., Ives, Z.: Fine-grained provenance for linear algebra operators. In: Boulakia, S.C. (ed.) 8Th USENIX Workshop on the Theory and Practice of Provenance, Washington (2016)

Download references

Acknowledgements

We thank Floris Geerts for inspiring discussions.

We also thank the anonymous reviewers for their comments which were very helpful in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gyssens.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a revised and extended version of the conference paper “On matrices and K-relations” presented at the 11th International Symposium on Foundations of Information and Knowledge Systems (FoIKS 2020), Dortmund, Germany, February 17–21, 2020 [5].

Robert Brijder has done this work as a Postdoctoral Fellow of the Research Foundation – Flanders (FWO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brijder, R., Gyssens, M. & Van den Bussche, J. On matrices and K-relations. Ann Math Artif Intell 90, 181–210 (2022). https://doi.org/10.1007/s10472-021-09760-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-021-09760-4

Keywords

Mathematics Subject Classification (2010)

Navigation