Abstract
Shape composition is a challenge in spatial reasoning. Qualitative Shape Descriptors (QSD) have proven to be rotation and location invariant, which make them useful in spatial reasoning tests. QSD uses qualitative representations for angles and lengths, but their composition operations have not been defined before. In this paper, the Qualitative Model for Angles (QMAngles) and the Qualitative Model for Lengths (QMLengths) are presented in detail by describing their arity, reference systems and operators. Their operators are defined taking the well-known temporal model by Allen (Commun. ACM 26(11), 832–843 (1983). https://doi.org/10.1145/182.358434) as a reference. Moreover, composition tables are built, and the composition relations of qualitative angles and lengths are proved using their geometric counterparts. The correctness of these composition tables is also proved computationally using a logic program implemented using Swi-Prolog.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Bremen Spatial Cognition Centre:http://bscc.spatial-cognition.de/
References
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983). https://doi.org/10.1145/182.358434
Allen, J.F., Hayes, P.J.: A common-sense theory of time. In: Proceedings of 9th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’85, pp. 528–531. Morgan Kaufmann Publishers Inc., San Francisco (1985)
Cohn, A.G., Renz, J.: Qualitative Spatial Reasoning, Handbook of Knowledge Representation. Elsevier, Wiley-ISTE, London (2007)
Düntsch, I., Wang, H., McCloskey, S.: A relation – algebraic approach to the region connection calculus. Theor. Comput. Sci. 255(1), 63–83 (2001). https://doi.org/10.1016/S0304-3975(99)00156-5
Dylla, F., Lee, J.H., Mossakowski, T., Schneider, T., van Delden, A., van de Ven, J., Wolter, D.: A survey of qualitative spatial and temporal calculi: Algebraic and computational properties. ACM Comput. Surv. 50(1), 7:1–7:39 (2017). https://doi.org/10.1145/3038927
Egenhofer, M.J.: Reasoning about binary topological relations. In: Proceedings of the Second International Symposium on Advances in Spatial Databases, SSD ’91, pp. 143–160. Springer, London (1991)
Falomir, Z., Gonzalez-Abril, L., Museros, L., Ortega, J.: Measures of similarity between objects from a qualitative shape description. Spat. Cogn. Comput. 13, 181–218 (2013a). https://doi.org/10.1080/13875868.2012.700463
Falomir, Z., Museros, L., Gonzalez-Abril, L., Velasco, F.: Measures of similarity between qualitative descriptions of shape, colour and size applied to mosaic assembling. J. Vis. Commun. Image Represent. 24(3), 388–396 (2013b). https://doi.org/10.1016/j.jvcir.2013.01.013
Forbus, K.D.: Qualitative modeling. Wiley Interdiscip. Rev. Cogn. Sci. 2(4), 374–391 (2011). https://doi.org/10.1002/wcs.115
Frank, A.U.: Qualitative spatial reasoning with cardinal directions. In: Kaindl H (ed.) 7. Österreichische Artificial-Intelligence-Tagung / Seventh Austrian Conference on Artificial Intelligence, pp 157–167. Springer, Berlin (1991). https://doi.org/10.1007/978-3-642-46752-3_17
Freksa, C.: Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. In: Frank, A.U., Campari, I., Formentini, U. (eds.), pp 162–178. Springer, Berlin (1992). https://doi.org/10.1007/3-540-55966-3_10
Ghourabi, F., Takahashi, K.: A proof of the compositions of time interval relations. In: Proceedings of Isabelle Workshop associated with Interactive Problem Solving (ITP). http://www21.in.tum.de/nipkow/Isabelle2016/ (2016)
Grigni, M., Papadias, D., Papadimitriou, C.: Topological inference. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’95, pp. 901–906. Morgan Kaufmann Publishers Inc., San Francisco (1995)
Ligozat, G.: When tables tell it all: Qualitative spatial and temporal reasoning based on linear orderings. In: Montello, D.R. (ed.) Spatial Information Theory, pp 60–75. Springer, Berlin (2001). https://doi.org/10.1007/3-540-45424-1_5
Ligozat, G.: Qualitative Spatial and Temporal Reasoning. MIT Press, Wiley-ISTE, London (2011)
Ligozat, G., Renz, J.: What is a qualitative calculus? a general framework. In: Zhang, C.W., Guesgen, H., Yeap, W.K. (eds.) PRICAI 2004: Trends in Artificial Intelligence, pp 53–64. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-28633-2_8
Ligozat, G.F.: Qualitative triangulation for spatial reasoning. In: Frank, A.U., Campari, I. (eds.) Spatial Information Theory A Theoretical Basis for GIS, pp 54–68. Springer, Berlin (1993). https://doi.org/10.1007/3-540-57207-4_5
Mcmunn, R.: Armed Forces Tests (The Testing Series), vol. 1. How2become Ltd, ISBN: 1907558098 (2010)
Moratz, R.: Representing relative direction as a binary relation of oriented points. In: Proceedings of the 2006 Conference on ECAI 2006: 17th European Conference on Artificial Intelligence, pp 407–411. IOS Press, Amsterdam (2006)
Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction of oriented points. Artif. Intell. 180-181, 34–45 (2012)
Museros, L., Falomir, Z., Gonzalez-Abril, L., Velasco, F.: A Qualitative Shape Description Scheme for Generating New Manufactured Shapes. In: 25Th International Workshop on Qualitative Reasoning (QR) Co-Located at the 22Nd Joint International Conference on Artificial Intelligence (IJCAI), Barcelona, Spain (2011)
Newcombe, N.: Picture this: Increasing math and science learning by improving spatial thinking. Amer. Educ. 34(2), 29–35 (2010)
Pich, A., Falomir, Z.: Logical composition of qualitative shapes applied to solve spatial reasoning tests. Cogn. Syst. Res. 52, 82–102 (2018). https://doi.org/10.1016/j.cogsys.2018.06.002
Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning, KR’92, pp 165–176. Morgan Kaufmann Publishers Inc., San Francisco (1992)
Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: van Beek, P. (ed.) Principles and Practice of Constraint Programming - CP 2005, pp 534–548. Springer, Berlin (2005). https://doi.org/10.1007/11564751_40
Sterling, L., Shapiro, E.: The Art of Prolog, 2nd edn. Advanced Programming Techniques. MIT Press, Cambridge (1994)
Stock, O.: Spatial and Temporal Reasoning. Kluwer Academic Publishers, Norwell (1997)
Vilain, M., Kautz, H., van Beek, P.: Readings in qualitative reasoning about physical systems. Morgan Kaufmann Publishers Inc., San Francisco (1990). chap Constraint Propagation Algorithms for Temporal Reasoning: A Revised Report, pp. 373–381
Wai, J., Lubinksi, D., Benbow, C.P.: Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. J. Educ. Psychol. 101(4), 817–835 (2009). https://doi.org/10.1037/a0016127
Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative spatial representation and reasoning in the sparq-toolbox. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition V Reasoning, Action, Interaction, pp 39–58. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-75666-8_3
Van de Weghe, N.: Representing and Reasoning about Moving Objects: a Qualitative Approach. PhD thesis, Ghent University (2004)
Van de Weghe, N., Kuijpers, B., Bogaert, P., De Maeyer, P.: A qualitative trajectory calculus and the composition of its relations. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.) GeoSpatial Semantics, pp 60–76. Springer, Berlin (2005). https://doi.org/10.1007/11586180_5
Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract. Log. Programm. (TPLP) 12(1-2), 67–96 (2012). https://doi.org/10.1017/S1471068411000494
Wolter, D.: Analyzing qualitative spatio-temporal calculi using algebraic geometry. Spatial Cogn. Comput. 12(1), 23–52 (2012). https://doi.org/10.1080/13875868.2011.586079
Acknowledgements
The funding and support by the Bremen Spatial Cognition CenterFootnote 1 (BSCC), the University of Bremen under project Cognitive Qualitative Descriptions and Applications (CogQDA), the Erasmus + Internship program, the grant FI-2017 (Generalitat de Catalunya and the European Social Fund) and the Young European Research Universities (YERUN) Mobility awards (first edition 2017/2018, and second edition 2018/2019) are all gratefully acknowledged. The authors also acknowledge discussions with Ramon Garcia-Pou. And they also thank the reviewers for their comments, which helped to improve this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Falomir, Z., Pich, A. & Costa, V. Spatial reasoning about qualitative shape compositions. Ann Math Artif Intell 88, 589–621 (2020). https://doi.org/10.1007/s10472-019-09637-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-019-09637-7