Abstract
The safety of a railway network is a very important issue considered very labour-intensive. Authors have developed different approaches in order to detect automatically the safety for mid-small railway networks. Although these approaches are very simple to implement, they have the drawback of being unsuitable to large networks since the algorithm takes large time to be run. In this paper, we show a new algebraic model which, besides being also simple to implement, has the advantage of being very fast and consequently can be used for checking the safety in a large railway network.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bjørner, D.: The FMERail/Train Annotated Rail Bibliography. Available from URL: http://www2.imm.dtu.dk/~db/fmerail/fmerail/ (2005)
Borälv, A.: Case study: formal verification of a computerized railway interlocking. Form. Asp. Comput. 10, 338–360 (1998)
Brickenstein, M., DreyerPolyBoRi, A.: Polybori: a framework for Gröbner-basis computations with Boolean polynomials. J. Symbol. Comput. 44(9), 1326–1345 (2009)
Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the basis elementals of the residue class ring of a zero dimensional polynomial ideal. J. Symbol. Comput. 41(3–4), 475–511 (2006)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Berlin (1992)
Cuéllar-Villar, D., Jiménez-Vega, M., Polo-Muriel, F., eds.: Historia de los Poblados Ferroviarios en España, Fundación de los Ferrocarriles Españoles, Madrid (2005)
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases. J. Pure Appl. Algebra 139(1), 61–88 (1999)
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero. In: Mora, T. (ed.) Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation ISSAC 2002 pp. 75–83. ACM Press (2002)
Gerdt, V.P., Zinin, M.V.: A Pommaret division algorithm for computing Gröbner bases in Boolean rings. In: Sendra, J.R., González-Vega, L. (eds.) Symbolic and Algebraic Computation, International Symposium, ISSAC 2008, pp. 95–102. ACM Press (2008)
Hansen, K.M.: Formalising railway interlocking systems. In: Nordic Seminar on Dependable Computing Systems, Department of Computer Science, pp. 83–94. Technical University of Denmark, Lyngby (1994)
Hernando, A., Roanes-Lozano, E., Laita, L.M.: A polynomial model for logics with a prime power number of truth values. J. Autom. Reason. doi:10.1007/s10817-010-9191-0
Hlavaty̌, T., Přeučil, L., Štěpán, P.Š.: Klapka, formal methods in development and testing of safety-critical systems: railway interlocking system. In: Intelligent Methods for Quality Improvement in Industrial Practice, vol. 1, pp. 14–25. CTU FEE, Department of Cybernetics, The Gerstner Laboratory, Prague (2002)
Hsiang, J.: Refutational theorem proving using term-rewriting systems. Artif. Intell. 25, 255–300 (1985)
Janota, A.: Using Z Specification for Railway Interlocking Safety. Period. Polytech. Ser. Transp. Eng. 28(1–2), 39–53 (2000)
Kapur, D., Narendran, P.: An Equational Approach to Theorem Proving in First-Order Predicate Calculus, 84CRD296, General Electric Corporate Research and Development Report, Schenectady, NY, March 1984, rev Dec 1984. Also In: Joshi, A.K. (ed.) Proceedings of IJCAI-85, pp. 1146–1153. Morgan Kaufmann (1985)
Laita, L.M., Roanes-Lozano, E., Maojo, V., de Ledesma, L., Laita, L.: An expert system for managing medical appropriateness criteria based on computer algebra techniques. Comput. Math. Appl. 51(5), 473–481 (2000)
Laita, L.M., de Ledesma, L., Roanes-Lozano, E., Roanes-Macías, E.: An interpretation of the propositional Boolean algebra as a k-algebra. Effective calculus. In: Campbell, J., Calmet, J. (eds.) Proceedings of the 2nd International Workshop/Conference on Artificial Intelligence and Symbolic Mathematical Computing (AISMC-2). Lecture Notes in Computer Science, vol. 958, pp. 255–263. Springer-Verlag (1995)
Lourdes-Jiménez, M., Santamaría, J.M., Barchino, R., Laita, L., Laita, L.M., González, L.A., Asenjo, A.: Knowledge representation for diagnosis of care problems through an expert system: model of the auto-care deficit situations. Expert Syst. Appl. 34, 2847–2857 (2008)
Montigel, M.: Modellierung und Gewährleistung von Abhängigkeiten in Eisenbahnsicherungsanlagen. Ph.D. thesis, ETH Zurich, Zurich (1994). Available from: URL: http://www.inf.ethz.ch/research/disstechreps/theses
Morley, M.J.: Modelling British Rail’s Interlocking Logic: Geographic Data Correctness. Technical Report ECS-LFCS-91-186, Laboratory for Foundations of Computer Science, Department of Computer Science, University of Edinburgh (1991)
Nakamatsu, K., Kiuchi, Y., Suzuki, A.: EVALPSN based railway interlocking simulator. In: Negoita, M.Gh., et al. (eds.) Knowledge-Based Intelligent Information and Engineering Systems. Springer LNAI, vol. 3214, pp. 961–967. Berlin, Heidelberg (2004)
Pérez-Carretero, C., Laita, L.M., Roanes-Lozano, E., Lázaro, L., González-Cajal, J., Laita, L.: A logic and computer algebra-based expert system for diagnosis of anorexia. Math. Comput. Simul. 58, 183–202 (2002)
Roanes E.-L., Laita, L.M.: An applicable topology-independent model for railway interlocking systems. Math. Comput. Simul. 45(1), 175–184 (1998)
Roanes-Lozano, E., Laita, L.M., Roanes-Macías, E.: An application of an ai methodology to railway interlocking systems using computer algebra. In: Pasqual del Pobil, A., Mira, J., Ali, M. (eds.) Tasks and Methods in Applied Artificial Intelligence, Proceedings of IEA-98-AIE, vol. II. Springer LNAI, vol. 1416, pp. 687–696. Berlin, Heidelberg (1998)
Roanes-Lozano, E., Roanes-Macías, E., Laita, L.M.: Railway interlocking systems and Gröbner bases. Math. Comput. Simul. 51(5), 473–481 (2000)
Roanes-Lozano, E., Laita, L.M., Roanes-Macías, E.: Maple V in A.I.: The Boolean algebra associated to a KBS. CAN Nieuwsbrief 14, 65–70 (1995)
Roanes-Lozano, E., Laita, L.M., Roanes-Macías, E.: A polynomial model for multivalued logics with a touch of algebraic geometry and computer algebra. Math. Comput. Simul. 45(1), 83–99 (1998)
Roanes-Lozano, E., Laita, L.M., Hernando, A., Roanes-Macías, E.: An algebraic approach to rule based expert systems. RACSAM 104(1), 19–40 (2010). doi:10.5052/RACSAM.2010.04
Roanes-Lozano, E., Hernando, A., Alonso, J.A., Laita, L.M.: A logic approach to decision taking in a railway interlocking system using maple. Math. Comput. Simul. doi:10.1016/j.matcom.2010.05.024
Rodríguez-Solano, C., Laita, L.M., Roanes-Lozano, E., López-Corral, L., Laita, L.: A computational system for diagnosis of depressive situations. Expert Syst. Appl. 31, 47–55 (2006)
Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool support for checking railway interlocking designs. In: Cant, T. (ed.) Proceedings of the 10th Australian Workshop on Safety Related Programmable Systems, pp. 101–107. Australian Computer Society, Inc., Sydney (2006)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hernando, A., Roanes-Lozano, E., Maestre-Martínez, R. et al. A logic-algebraic approach to decision taking in a railway interlocking system. Ann Math Artif Intell 65, 317–328 (2012). https://doi.org/10.1007/s10472-012-9321-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-012-9321-y