Boolean lexicographic optimization: algorithms & applications | Annals of Mathematics and Artificial Intelligence Skip to main content
Log in

Boolean lexicographic optimization: algorithms & applications

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Multi-Objective Combinatorial Optimization (MOCO) problems find a wide range of practical application problems, some of which involving Boolean variables and constraints. This paper develops and evaluates algorithms for solving MOCO problems, defined on Boolean domains, and where the optimality criterion is lexicographic. The proposed algorithms build on existing algorithms for either Maximum Satisfiability (MaxSAT), Pseudo-Boolean Optimization (PBO), or Integer Linear Programming (ILP). Experimental results, obtained on problem instances from haplotyping with pedigrees and software package dependencies, show that the proposed algorithms can provide significant performance gains over state of the art MaxSAT, PBO and ILP algorithms. Finally, the paper also shows that lexicographic optimization conditions are observed in the majority of the problem instances from the MaxSAT evaluations, motivating the development of dedicated algorithms that can exploit lexicographic optimization conditions in general MaxSAT problem instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–372 (2006). Benchmarks available from http://miplib.zib.de

    Article  MathSciNet  MATH  Google Scholar 

  2. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus specialized 0-1 ILP: an update. In: International Conference on Computer-Aided Design, pp. 450–457 (2002)

  3. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiability testing. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 427–440 (2009)

  4. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat. In: AAAI Conference on Artificial Intelligence (2010)

  5. Argelich, J., Li, C.M., Manyà, F.: An improved exact solver for partial Max-SAT. In: International Conference on Nonconvex Programming: Local and Global Approaches, pp. 230–231 (2007)

  6. Argelich, J., Li, C.M., Manyà, F.: An improved exact solver for partial Max-SAT. In: Int. Conf. on Nonconvex Programming: Local & Global Approaches, pp. 230–231 (2007)

  7. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT Evaluations. http://www.maxsat.udl.cat/

  8. Argelich, J., Lynce, I., Marques-Silva, J.: On solving Boolean multilevel optimization problems. In: International Joint Conference on Artificial Intelligence, pp. 393–398 (2009)

  9. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo Boolean constraints to SAT. JSAT 2, 191–200 (2006)

    MATH  Google Scholar 

  10. Barth, P.: A Davis–Putnam enumeration algorithm for linear pseudo-Boolean optimization. Technical Report MPI-I-95-2-003, Max Plank Institute for Computer Science (1995)

  11. Bensana, E., Lemaître, M., Verfaillie, G.: Earth observation satellite management. Constraints 4(3), 293–299 (1999)

    Article  MATH  Google Scholar 

  12. Berre, D.L.: SAT4J Library. http://www.sat4j.org

  13. Berre, D.L., Rapicault, P.: Dependency management for the Eclipse ecosystem. In: International Workshop on Open Component Ecosystems, pp. 21–30 (2009)

  14. Büning, H.K., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) SAT Handbook, pp. 735–760. IOS Press (2009)

  15. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. In: Design Automation Conference, pp. 830–835 (2003)

  16. Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. TPLP 8(1), 121–128 (2008)

    MATH  Google Scholar 

  17. Cooper, M.C., Cussat-Blanc, S., de Roquemaurel, M., Régnier, P.: Soft arc consistency applied to optimal planning. In: International Conference on Principles and Practice of Constraint Programming, pp. 680–684 (2006)

  18. Coudert, O.: On solving covering problems. In: Design Automation Conference, pp. 197–202 (1996)

  19. de Simone, C., Diehl, M., Jünger, M., Mutzel, P., Reinelt, G., Rinaldi, G.: Exact ground states of Ising spin glasses: new experimental results with a branch-and-cut algorithm. J. Stat. Phys. 80(1–2), 487–496 (1995)

    Article  MATH  Google Scholar 

  20. EDOS European Project: URL: http://www.edos-project.org/bin/view/Main/

  21. Een, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. JSAT 2, 1–26 (2006)

    MATH  Google Scholar 

  22. Ehrgott, M.: Multicriteria Optimization. Springer (2005)

  23. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Freuder, E., Heffernan, R., Wallace, R., Wilson, N.: Lexicographically-ordered constraint satisfaction problems. Constraints 15(1), 1–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 252–265 (2006)

  26. Gandibleux, X., Frevilel, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objectives case. Journal of Heuristics 6(3), 361–383 (2000)

    Article  MATH  Google Scholar 

  27. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Logic Programming and Nonmonotonic Reasoning, pp. 260–265 (2007)

  28. Giunchiglia, E., Maratea, M.: Planning as satisfiability with preferences. In: AAAI Conference on Artificial Intelligence, pp. 987–992 (2007)

  29. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Handbook of Knowledge Representation, pp. 89–134. Elsevier (2008)

  30. Graça, A., Lynce, I., Marques-Silva, J., Oliveira, A.L.: Haplotype inference combining pedigrees and unrelated individuals. In: Workshop on Constraint Based Methods for Bioinformatics (2009)

  31. Graça, A., Lynce, I., Marques-Silva, J., Oliveira, A.L.: Efficient and accurate haplotype inference by combining parsimony and pedigree information. In: Algebraic and Numeric Biology, LNCS, vol. 6479 (2010)

  32. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem. Computing 44(4), 279–303 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Heras, F., Larrosa, J., de Givry, S., Schiex, T.: 2006 and 2007 Max-SAT evaluations: contributed instances. JSAT 4(2–4), 239–250 (2008)

    Google Scholar 

  34. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: an efficient weighted Max-SAT solver. J. Artif. Intell. Res. 31, 1–32 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial auction algorithms. In: ACM Conference on Electronic Commerce, pp. 66–76 (2000)

  36. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: SAT Handbook, pp. 613–632. IOS Press (2009)

  37. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30, 321–359 (2007)

    Google Scholar 

  38. Lin, H., Su, K.: Exploiting inference rules to compute lower bounds for MAX-SAT solving. In: International Joint Conference on Artificial Intelligence, pp. 2334–2339 (2007)

  39. Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: Solving multi-objective pseudo-Boolean problems. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 56–69 (2007)

  40. Mancinelli, F., Boender, J., Cosmo, R.D., Vouillon, J., Durak, B., Leroy, X., Treinen, R.: Managing the complexity of large free and open source package-based software distributions. In: Int. Conf. Automated Soft. Engineering, pp. 199–208 (2006)

  41. Mancoosi European Project: URL: http://www.mancoosi.org/

  42. Mancoosi European Project: Internal evaluation. URL: http://www.mancoosi.org/misc-live (2010)

  43. Mancoosi European Project: International evaluation. URL: http://www.mancoosi.org/misc-2010 (2010)

  44. Manquinho, V., Marques-Silva, J.: Satisfiability-based algorithms for Boolean optimization. Ann. Math. Artif. Intell. 40(3–4), 353–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean optimization. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 495–508 (2009)

  46. Marques-Silva, J.: Practical applications of Boolean-based optimization: a bibliography. Technical Report 58, INESC-ID (2009)

  47. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) SAT Handbook, pp. 131–154. IOS Press (2009)

  48. Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based maximum satisfiability algorithms. In: International Conference on Theory and Applications of Satisfiability Testing, pp. 225–230 (2008)

  49. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. Computing Research Repository, abs/0712.0097 (2007)

  50. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable cores. In: Design, Automation and Testing in Europe Conference, pp. 408–413 (2008)

  51. Phillips, N.V.: A weighting function for pre-emptive multicriteria assignment problems. J. Oper. Res. Soc. 38(9), 797–802 (1987)

    MATH  Google Scholar 

  52. Pipatsrisawat, K., Palyan, A., Chavira, M., Choi, A., Darwiche, A.: Solving weighted Max-SAT problems in a reduced search space: a performance analysis. Journal on Satisfiability Boolean Modeling and Computation 4, 191–217 (2008)

    MATH  Google Scholar 

  53. Prestwich, S.: CNF encodings. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) SAT Handbook, pp. 75–98. IOS Press (2009)

  54. Ramírez, M., Geffner, H.: Structural relaxations by variable renaming and their compilation for solving MinCostSAT. In: International Conference on Principles and Practice of Constraint Programming, pp. 605–619 (2007)

  55. Romero, C.: Extended lexicographic goal programming: a unifying approach. Omega 29(1), 63–71 (2001)

    Article  Google Scholar 

  56. Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Roussel, O., Manquinho, V.: Pseudo-Boolean and cardinality constraints. In: SAT Handbook, pp. 695–734. IOS Press (2009)

  58. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1998)

  59. Strickland, D., Barnes, E., Sokol, J.: Optimal protein structure alignment using maximum cliques. Oper. Res. 53(3), 389–402 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Teghem, J.: Multi-objective combinatorial optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 2437–2442. Springer (2009)

  61. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: OPIUM: optimal package install/uninstall manager. In: Int. Conf. Soft. Engineering, pp. 178–188 (2007)

  62. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-Criteria Decis. Anal. 3, 83–104 (1994)

    Article  MATH  Google Scholar 

  63. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

    Article  MathSciNet  Google Scholar 

  64. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. Wiley (1999)

  65. Yagiura, M.: Ramsey Number Problem Generator. Available from http://www-or.amp.i.kyoto-u.ac.jp/~yagiura/sat/Ramsey/ (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Lynce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques-Silva, J., Argelich, J., Graça, A. et al. Boolean lexicographic optimization: algorithms & applications. Ann Math Artif Intell 62, 317–343 (2011). https://doi.org/10.1007/s10472-011-9233-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-011-9233-2

Keywords

Mathematics Subject Classifications (2010)

Navigation