An external archive guided Harris Hawks optimization using strengthened dominance relation for multi-objective optimization problems | Artificial Intelligence Review Skip to main content
Log in

An external archive guided Harris Hawks optimization using strengthened dominance relation for multi-objective optimization problems

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In this paper, Multi-Objective Harris Hawks Optimization (MOHHO) is proposed based on strengthened dominance relation (SRD) to solve multi-objective optimization problems. Specifically, MOHHO uses an additional population archive to store the best non-dominated solutions generated so far by the exploration process at the aim to maintain the elitism concept. Moreover, the leader’s solutions are selected from the external archive to guide the main population of Hawks to interesting search regions. Furthermore, the strengthened dominance relation is adopted to provide a good compromise between coverage and convergence of the obtained Pareto set. The proposed algorithm is validated via five bi-objective and seven three-objective test functions, and it is compared with three well-known multi-objective meta-heuristics. The experimental results show that MOHHO algorithm outperforms its competitors by providing better convergence behaviour with more diversified solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Afshari H, Hare W, Tesfamariam S (2019) Constrained multi-objective optimization algorithms: review and comparison with application in reinforced concrete structures. Appl Soft Comput 83:105631

    Article  Google Scholar 

  • Allou L, Zouache D, Amroun K, Got A (2022) A novel epsilon-dominance Harris Hawks optimizer for multi-objective optimization in engineering design problems. Neural Comput Appl 1–30

  • Bader J, Zitzler E (2011) Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  • Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  MATH  Google Scholar 

  • Brockhoff D, Wagner T, Trautmann H (2015) 2 indicator-based multiobjective search. Evol Comput 23(3):369–395

    Article  Google Scholar 

  • Brockhoff D, Zitzler E (2007) Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods. In: 2007 IEEE congress on evolutionary computation, pp. 2086–2093. IEEE

  • Cheng Y, Jin Y, Hu J (2009) Adaptive epsilon non-dominated sorting multi-objective evolutionary optimization and its application in shortest path problem. In: 2009 ICCAS-SICE, pp. 2545–2549. IEEE

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  • Dabba A, Tari A, Zouache D (2020) Multiobjective artificial fish swarm algorithm for multiple sequence alignment. Inf Syst Oper Res 58(1):38–59

    MathSciNet  Google Scholar 

  • Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002a) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2002b) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol 1, pp 825–830. IEEE

  • Deb K, Mohan M, Mishra S (2005) Evaluating the \(\varepsilon\)-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol Comput 13(4):501–525

    Article  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  • Du P, Wang J, Hao Y, Niu T, Yang W (2020) A novel hybrid model based on multi-objective Harris Hawks optimization algorithm for daily pm2.5 and pm10 forecasting. Appl Soft Comput 96:106620

    Article  Google Scholar 

  • Falcón-Cardona JG, Coello CAC (2020) Indicator-based multi-objective evolutionary algorithms: a comprehensive survey. ACM Comput Surv 53(2):1–35

    Article  Google Scholar 

  • Gölcük İ, Ozsoydan FB (2021) Quantum particles-enhanced multiple Harris Hawks swarms for dynamic optimization problems. Expert Syst Appl 167:114202

    Article  Google Scholar 

  • Got A, Moussaoui A, Zouache D (2020) A guided population archive whale optimization algorithm for solving multiobjective optimization problems. Expert Syst Appl 141:112972

    Article  Google Scholar 

  • Got A, Zouache D, Moussaoui A (2022) Momrfo: multi-objective manta ray foraging optimizer for handling engineering design problems. Knowl-Based Syst 237:107880

    Article  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  • Houssein EH, Hosney ME, Oliva D, Mohamed WM, Hassaballah M (2020) A novel hybrid Harris Hawks optimization and support vector machines for drug design and discovery. Comput Chem Eng 133:106656

    Article  Google Scholar 

  • Jangir P, Buch H, Mirjalili S, Manoharan P (2021) Mompa: multi-objective marine predator algorithm for solving multi-objective optimization problems. Evolut Intell 1–27

  • Kahloul S, Zouache D, Brahmi B, Got A (2022) A multi-external archive-guided henry gas solubility optimization algorithm for solving multi-objective optimization problems. Eng Appl Artif Intell 109:104588

    Article  Google Scholar 

  • Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comput 10(3):263–282

    Article  Google Scholar 

  • Li H, Zhang Q (2008) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  • Li K, Deb K, Zhang Q, Kwong S (2014) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716

    Article  Google Scholar 

  • Liang J, Ban X, Yu K, Qu B, Qiao K, Yue C, Chen K, Tan KC (2022) A survey on evolutionary constrained multi-objective optimization. IEEE Trans Evolut Comput

  • Liu HL, Gu F, Zhang Q (2013) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455

    Article  Google Scholar 

  • Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47:106–119

    Article  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  • Najafzadeh M (2015) Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions. Ocean Eng 99:85–94

    Article  Google Scholar 

  • Najafzadeh M, Niazmardi S (2021) A novel multiple-kernel support vector regression algorithm for estimation of water quality parameters. Nat Resour Res 30(5):3761–3775

    Article  Google Scholar 

  • Najafzadeh M, Tafarojnoruz A (2016) Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environ Earth Sci 75(2):1–12

    Article  Google Scholar 

  • Saini N, Saha S (2021) Multi-objective optimization techniques: a survey of the state-of-the-art and applications. Eur Phys J Spec Topics 230(10):2319–2335

    Article  Google Scholar 

  • Savsani V, Tawhid MA (2017) Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng Appl Artif Intell 63:20–32

    Article  Google Scholar 

  • Sierra MR, Coello CAC (2004) A new multi-objective particle swarm optimizer with improved selection and diversity mechanisms. Technical Report of CINVESTAV-IPN

  • Sun Y, Yen GG, Yi Z (2018) IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans Evol Comput 23(2):173–187

    Article  Google Scholar 

  • Tian Y, Cheng R, Zhang X, Su Y, Jin Y (2018) A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization. IEEE Trans Evol Comput 23(2):331–345

    Article  Google Scholar 

  • Wagner M, Neumann F (2013) A fast approximation-guided evolutionary multi-objective algorithm. In: Proceedings of the 15th annual conference on Genetic and evolutionary computation, pp 687–694

  • Wang S, Jia H, Liu Q, Zheng R (2021) An improved hybrid aquila optimizer and Harris Hawks optimization for global optimization. Math Biosci Eng 18:7076–7109

    Article  MathSciNet  MATH  Google Scholar 

  • While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating hypervolume. IEEE Trans Evol Comput 10(1):29–38

    Article  Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) Spea2: improving the strength pareto evolutionary algorithm. TIK-report 103

  • Zouache D, Abdelaziz FB (2022) Guided manta ray foraging optimization using epsilon dominance for multi-objective optimization in engineering design. Expert Syst Appl 189:116126

    Article  Google Scholar 

  • Zouache D, Moussaoui A, Abdelaziz FB (2018) A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem. Eur J Oper Res 264(1):74–88

    Article  MathSciNet  MATH  Google Scholar 

  • Zouache D, Arby YO, Nouioua F, Abdelaziz FB (2019) Multi-objective chicken swarm optimization: a novel algorithm for solving multi-objective optimization problems. Comput Ind Eng 129:377–391

    Article  Google Scholar 

  • Zouache D, Abdelaziz FB, Lefkir M, Chalabi NEH (2021) Guided moth-flame optimiser for multi-objective optimization problems. Ann Oper Res 296(1):877–899

    Article  MathSciNet  MATH  Google Scholar 

  • Zouache D, Ben Abdelaziz F (2022) MGDE: a many-objective guided differential evolution with strengthened dominance relation and bi-goal evolution. Ann Oper Res 1–38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djaafar Zouache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouache, D., Got, A. & Drias, H. An external archive guided Harris Hawks optimization using strengthened dominance relation for multi-objective optimization problems. Artif Intell Rev 56, 2607–2638 (2023). https://doi.org/10.1007/s10462-022-10235-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10235-z

Keywords

Navigation