Learning sign language machine translation based on elastic net regularization and latent semantic analysis | Artificial Intelligence Review Skip to main content
Log in

Learning sign language machine translation based on elastic net regularization and latent semantic analysis

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In this paper, we present a new sign language machine translation approach based on regression method. The aim of this work is to improve the translation quality and accuracy of existing regularized regression methods. Our approach represents a methodological foundation for small-scale corpus domains such as the Sign Language Machine Translation field. Our method is based on the Elastic net regularization using linear combination of the L1 and L2 penalties of the lasso and ridge methods. We show that using both the de-bruijn graph with the Latent Semantic Analysis technique in the decoding process improves the translation results. The system is experimented on American Sign Language parallel corpora containing 300 sentences and assessed by BLEU, METEOR, NIST and F1-MESURE machine translation evaluation metrics. We obtained good experimental results compared to classical phrase based approach i.e MOSES framework. Also our approach improved the translation results compared to LASSO and RIDGE regression approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Banerjee S, Lavie A (2005) METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization at the 43rd Annual Meeting of the Association of Computational Linguistics (ACL-2005), Ann Arbor, June 2005

  • Battison R (1978) Lexical borrowing in American sign language: phonological and morphological restructuring. Linstok Press, Silver Spring

    Google Scholar 

  • Biçici E, Yuret D (2010) L1 regularization for learning word alignments in sparse feature matrices. In: Proceedings of the Computer Science Student Workshop, 2010

  • Bishop CM (2006). Pattern recognition and machine learning. Springer ISBN 978-0-387-31073-2, 2006

  • Boulares M, Jemni M (2012) Mobile sign language translation system for deaf community. In: Proceedings of the International Cross-Disciplinary Conference on Web Accessibility. ACM, ISBN: 978-1-4503-1019-2

  • Boulares M, Jemni M (2014) Combined methodology based on kernel regression and kernel density estimation for sign language machine translation. Advances in neural networks. ISNN’14, Springer pp 374–384

  • Charles A, Rebecca S (2000) Reading optimally builds on spoken language implication for deaf readers. Learning research and development center University of Pittsburgh, Pittsburgh

    Google Scholar 

  • Colin CA et al (1997) An R-squared measure of goodness of fit for some common nonlinear regression models. J Econ 77(2):1790–1792. doi:10.1016/S0304-4076(96)01818-0 (PMID 11230695)

    MathSciNet  Google Scholar 

  • Cortes C, Mehryar M, Jason W (2007) A general regression framework for learning string-to-string mappings. In: Predicting structured data. The MIT Press, pp 143–168, September 2007

  • Coughlin D (2003) Correlating automated and human assessments of machine translation quality. MT Summit IX, New Orleans

    Google Scholar 

  • De Lathauwer L et al (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278

    Article  MathSciNet  MATH  Google Scholar 

  • Deerwester SC et al (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci (1986–1998); Sep 1990; 41, 6; ABI/INFORM Global pg. 391

  • Denoual E, Lepage Y (2005) BLEU in characters: towards automatic MT evaluation in languages without word delimiters. In: Companion Volume to the Proceedings of the Second International Joint Conference on Natural Language Processing, pp 81–86

  • Doddington G (2002) Automatic evaluation of machine translation quality using n-gram cooccurrence statistics. In: Proceedings of the Human Language Technology Conference (HLT), San Diego, pp 128–132

  • Doddington G (2002) The NIST automated measure and its relation to IBMs BLEU. In: Proceedings of LREC-2002 Workshopon Machine Translation Evaluation: Human Evaluators Meet Automated Metrics

  • Efthimiou E et al (2009) Sign language recognition, generation, and modelling: a research effort with applications in deaf communication. In: Universal access in human–computer interaction addressing diversity. Springer, pp 21–30

  • Efthimiou E et al (2007) GSLC: creation and annotation of a greek sign language corpus for HCI. In: Stephanidis C (ed) HCI 2007, LNCS, vol 4554. Springer, Heidelberg, pp 657–666

    Google Scholar 

  • Emmorey K (2005) The confluence of space and language in signed languages. Linguist Am Sign Lang Introd 3:318–346

    Google Scholar 

  • Finch A, Hwang Y-S, Sumita E (2005) Using machine translation evaluation techniques to determine sentence-level semantic equivalence. IWP2005 2005

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67. doi:10.2307/1267351 JSTOR 1271436

    Article  MathSciNet  MATH  Google Scholar 

  • Huenerfauth M, Lu P (2011) Effect of spatial reference and verb inflection on usability of sign language animations. Springer-Verlag Univ Access Inf Soc. doi:10.1007/s10209-011-0247-7

    Google Scholar 

  • Hung-Yu S, Chung-Hsien W (2009) Improving structural statistical machine translation for sign language with small corpus using thematic role templates as translation memory. IEEE Trans Audio Speech Lang Process 17(7):1305–1315 September 2009

    Article  Google Scholar 

  • Koehn P et al (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions, pp 177–180

  • Koehn P, Hoang H (2007) Factored translation models. In: Proceedings of EMNLP-CoNLL’07

  • Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of HAACL-HLT’03, pp 48–54

  • Lavie A, Sagae K, Jayaraman S (2004) The Significance of Recall in Automatic Metrics for MT Evaluation. In: Proceedings of AMTA 2004, Washington DC. September 2004

  • Leslie C, Eskin E, Stafford W (2002) The spectrum kernel: a string kernel forsvm protein classifi-cation. Pacific symposium on Biocomputing. pp 566–575. 2002

  • Lodhi H, Saunders C, Shawe-Taylor J, Nello C, Watkins C (2002) Text classification using string kernels. J Mach Learn Res 2:419–444

    MATH  Google Scholar 

  • Neidle C et al (2000) The syntax of American sign language: functional categories and hierarchical structure. MIT Press, Cambridge

    Google Scholar 

  • Neidle C, Sclaroff S (2002) Data collected at the national center for sign language and gesture resources. Boston University, Boston

    Google Scholar 

  • Papineni K et al (2002) BLEU: a method for automatic evaluation of machine translation. ACL-2002: 40th Annual meeting of the Association for Computational Linguistics. pp 311–318. CiteSeerX: 10.1.1.19.9416

  • Powers DMW (2011) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J Mach Learn Technol 2(1):37–63

    MathSciNet  Google Scholar 

  • Przybocki M (2004) NIST machine translation 2004 evaluation summary of results. In: Machine Translation Evaluation Workshop

  • Sandler W (1989) Phonological representation of the sign: linearity and nonlinearity in American sign language. Foris, Dordrecht

    Book  Google Scholar 

  • Schmidt C, Koller O, Ney H, Hoyoux T, Piater J (2013) Using viseme recognition to improve a sign language translation system. International Workshop on Spoken Language Translation, pp 197–203

  • Serrano N, Andres-Ferrer J, Casacuberta F (2009) On a kernel regression approach to machine translation. In: Iberian Conference on Pattern Recognition and Image Analysis, pp 394–401, 2009

  • Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge university press, Cambridge

    Book  MATH  Google Scholar 

  • Stein D (2012) Analysis, preparation, and optimization of statistical sign language machine translation. Mach Trans 26(4):325–357

    Article  Google Scholar 

  • Stokoe WC (1978) Sign language structure. 1978. ERIC

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc. Series B (Methodol). 267–288

  • Trevor H, Jonathan T, Robert T, Guenther W (2006) Forward stagewise regression and the monotone lasso. Electron J Stat 1:1–29

    MathSciNet  MATH  Google Scholar 

  • Trevor H, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Valli C, Lucas C (2000) Linguistics of American sign language: an introduction. Gallaudet University Press, Washington, DC

    Google Scholar 

  • Watkins C (2000) Dynamic alignment kernels. Adv Large Margin Classif, 39–50

  • Zhuoran W, Shawe-Taylor J (2008) Kernel regression framework for machine translation: UCL system description for WMT 2008 shared translation task. In: Proceedings of the Third Workshop on Statistical Machine Translation, pp 155–158, 2008

  • Zhuoran W, Shawe-Taylor J, Sandor S (2007) Kernel regression based machine translation. In: Human Language Technologies. The Conference of the North American Chapter of the Association for Computational Linguistics; pp 185–188, 2007

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc: Series B (Stat Methodol) 67(2):301–320 April 2005

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrez Boulares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulares, M., Jemni, M. Learning sign language machine translation based on elastic net regularization and latent semantic analysis. Artif Intell Rev 46, 145–166 (2016). https://doi.org/10.1007/s10462-016-9460-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-016-9460-3

Keywords

Navigation