Abstract
This paper addresses the development of an efficient information gathering and exploration strategy for robotic missions when a high level of autonomy is expected. A multi-agent system is considered, which consists of several mobile sensing platforms with the goal to identify the parameters of a spatio-temporal process modeled by a partial differential equation. Specifically, an exploration of a diffusion process driven by an unknown number of sparsely located sources is considered. A probabilistic approach toward partial differential equations and sparsity constraints modeling with factor graphs is developed and realized by a customized message passing algorithm. The algorithm permits efficient identification of source parameters: the number of sources, their locations and amplitudes. In addition, an exploration strategy to guide the agents to more informative sampling locations is proposed; this accelerates identification of the source parameters. The message passing implementation facilitates efficient distributed implementation, which is of significant advantage with respect to scalability, computational complexity and an implementation in a multi-agent system. The effectiveness of the algorithm is demonstrated using synthetic data in simulations.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Note that this is true provided that \( \varvec{M} [n]\) is a selection matrix, i.e., when \(y_c[n]\) is a noisy version of \(f_c[n]\).
Note that \(\tau _c>0\)
Recall that the message \(m_{G_c \rightarrow u_c[n]}\) is responsible for this prior.
Rectangular domains can be considered just as easily.
References
Alexanderian, A., Petra, N., Stadler, G., & Ghattas, O. (2013). A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized l0-sparsification. SIAM Journal on Scientific Computing, 36(5), 27. doi:10.1137/130933381.
Bartlett, M. S. (1951). An inverse matrix adjustment arising in discriminant analysis. The Annals of Mathematical Statistics, 22(1), 107–111.
Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., & Wilcox, L. C. (2012). Extreme-scale UQ for Bayesian inverse problems governed by PDEs. In International conference for high performance computing, networking, storage and analysis, SC. doi:10.1109/SC.2012.56.
Candes, E., & Wakin, M. B. (2008). An introduction to compressive sampling. Signal Processing Magazine, IEEE, 25(2), 21–30.
Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford: Clarendon Press.
Demetriou, M. (1999). Numerical investigation on optimal actuator/sensor location of parabolic PDEs. In Proceedings of the 1999 American control conference (Vol. 3, June, pp. 1722–1726). doi:10.1109/ACC.1999.786131.
Faulds, A. L., King, B. B., & Tech, V. (2000). Sensor location in feedback control of partial differential equation systems. In Proceedings of the 2000 IEEE international conference on control applications (pp. 536–541).
Frey, B. J., & MacKay, D. J. C. (1998). A revolution: Belief propagation in graphs with cycles. In Proceedings of the 1997 conference on advances in neural information processing systems 10 (NIPS ’97) (pp. 479–485). Cambridge, MA: MIT Press.
Frey, B. J., & Kschischang, F. R. (1996). Probability propagation and iterative decoding. In Proceedings of the 34th Allerton conference on communications, control and computing.
Ghahramani, Z., & Beal, M. J. (2000). Graphical models and variational methods. In Advanced mean field methods: Theory and practice. MIT Press.
Golub, G. H., & Loan, C. F. V. (2012). Matrix computations (4th ed.). Baltimore: The Johns Hopkins University Press.
Gong, W. (2013). Approximations of parabolic equations with measure data. Mathematics of Computation, 82(281), 69–98. doi:10.1090/S0025-5718-2012-02630-5.
Herzog, R., Stadler, G., & Wachsmuth, G. (2012). Directional sparsity in optimal control of partial differential equations. SIAM Journal on Control and Optimization, 50(2), 943–963. doi:10.1137/100815037.
Kaipio, J., & Somersalo, E. (2005). Statistical and computational inverse problems (1st ed.). New York: Springer. doi:10.1007/b138659.
Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in gaussian processes: Theory, efficient Algorithms and empirical studies. Journal of Machine Learning Research, 9, 235–284.
Kschischang, F. R., Frey, B. J., & Loeliger, Ha. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519. doi:10.1109/18.910572.
Kubrusly, C. S., & Malebranche, H. (1985). Sensors and controllers location in distributed systems—A survey. Automatica, 21(2), 117–128. doi:10.1016/0005-1098(85)90107-4.
Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.
Kunisch, K., Pieper, K., & Vexler, B. (2014). Measure valued directional sparsity for parabolic optimal control problems. SIAM Journal on Control and Optimization, 52(5), 3078–3108. doi:10.1137/140959055.
Lilienthal, A. J., Reggente, M., Trincavelli, M., Blanco, J. L., & Gonzalez, J. (2009) A statistical approach to gas distribution modelling with mobile robots-the kernel DM+ v algorithm. In IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009 (pp. 570–576). doi:10.1109/IROS.2009.5354304.
Loeliger, Ha. (2004). An introduction to factor graphs. Signal Processing Magazine, IEEE, 21(1), 28–41.
MacKay, D. J. C. (1992). Information-based objective functions for active data selection. Neural Computation, 4(4), 590–604. doi:10.1162/neco.1992.4.4.590.
Mackay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.
Martinez-Camara, M., Dokmanic, I., Ranieri, J., Scheibler, R., Vetterli, M., & Stohl, A. (2013). The Fukushima inverse problem. In 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4330–4334).
Meyer, F., Riegler, E., Hlinka, O., & Hlawatsch, F. (2012). Simultaneous distributed sensor self-localization and target tracking using belief propagation and likelihood consensus. In 2012 Conference record of the forty sixth Asilomar conference on signals, systems and computers (ASILOMAR).
Morris, K. (2011). Linear-quadratic optimal actuator location. IEEE Transactions on Automatic Control, 56(1), 113–124. doi:10.1109/TAC.2010.2052151.
Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate inference: An empirical study. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (UAI’99) (pp. 467–475). San Francisco, CA: Morgan Kaufmann Publishers Inc.
Neumann, P. P., Asadi, S., Lilienthal, A. J., Bartholmai, M., & Schiller, J. H. (2012). Micro-drone for wind vector estimation and gas distribution mapping. Robotics & Automation Magazine, IEEE, 19(1), 50–61.
Park, T., & Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association, 103(482), 681–686. doi:10.1198/016214508000000337.
Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco: Kaufmann.
Pukelsheim, F. (1993). Optimal design of experiments. Hoboken: Wiley.
Riegler, E., Kirkelund, G., Manchon, C., & Fleury, B. (2010). Merging belief propagation and the mean field approximation: A free energy approach. In 2010 6th International symposium on turbo codes and iterative information processing (ISTC) (Vol. 59, no. 1, pp. 588–602). doi:10.1109/ISTC.2010.5613851.
Rossi, L. A., Krishnamachari, B., & Kuo, C. C. (2004). Distributed parameter estimation for monitoring diffusion phenomena using physical models. In 2004 First annual IEEE communications society conference on sensor and ad hoc communications and networks, 2004. IEEE SECON 2004 (pp. 460–469). doi:10.1109/SAHCN.2004.1381948
Sawo, F., Roberts, K., & Hanebeck, U. D. (2006). Bayesian estimation of distributed phenomena using discretized representations of partial differential equations. In 3rd International conference on informatics in control, automation and robotics (pp. 16–23).
Shutin, D., Kulkarni, S. R., & Poor, H. V. (2011). Stationary point variational bayesian attribute-distributed sparse learning with l 1 sparsity constraints. In 2011 4th IEEE international workshop on computational advances in multi-sensor adaptive processing, CAMSAP 2011 (pp. 277–280). doi:10.1109/CAMSAP.2011.6136003.
Singh, A., Ramos, F., Whyte, H. D., & Kaiser, W. J. (2010). Modeling and decision making in spatio-temporal processes for environmental surveillance. In IEEE international conference on robotics and automation (pp. 5490–5497).
Sivergina, I. F., & Polis, M. P. (2002). Comments on “Model-based solution techniques for the source localization problem”. IEEE Transactions on Control Systems Technology, 10(4), 633.
Strikwerda, J. C. (2004). Finite difference schemes and partial differential equations (2nd ed.). Philadelphia: Society for Industrial and Applied Mathematics.
Tanner, R. M. (1981). A recursive approach to low complexity codes. IEEE Transactions on Information Theory, 27(5), 533–547.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267–288.
Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211–244.
Uciński, D. (2004). Optimal measurement methods for distributed parameter system identification. Boca Raton: CRC Press.
Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics (2nd ed.). Harlow: Pearson Education Limited. doi:10.2514/1.22547.
Wang, J., & Zabaras, N. (2005). Hierarchical bayesian models for inverse problems in heat conduction. Inverse Problems, 21(1), 29. doi:10.1088/0266-5611/21/1/012.
Wang, J., & Zabaras, N. (2005). Using bayesian statistics in the estimation of heat source in radiation. International Journal of Heat and Mass Transfer, 48(1), 15–29. doi:10.1016/j.ijheatmasstransfer.2004.08.009.
Whaite, P., & Ferrie, F. (1997). Autonomous exploration: Driven by uncertainty. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3), 193–205. doi:10.1109/34.584097.
Winn, J., & Bishop, C. M. (2005). Variational message passing. Journal of Machine Learning Research, 6, 661–694.
Wipf, D. P., & Rao, B. D. (2004). Sparse bayesian learning for basis selection. IEEE Transactions on Signal Processing, 52(8), 2153–2164. doi:10.1109/TSP.2004.831016.
Xu, Y., Choi, J., Dass, S., & Maiti, T. (2016). Bayesian prediction and adaptive sampling algorithms for mobile sensor networks. Berlin: Springer. doi:10.1007/978-3-319-21921-9.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wiedemann, T., Manss, C. & Shutin, D. Multi-agent exploration of spatial dynamical processes under sparsity constraints. Auton Agent Multi-Agent Syst 32, 134–162 (2018). https://doi.org/10.1007/s10458-017-9375-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10458-017-9375-7