A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation | Advances in Computational Mathematics Skip to main content
Log in

A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose and analyze a time-stepping Crank-Nicolson(CN) alternating direction implicit(ADI) scheme combined with an arbitrary-order orthogonal spline collocation (OSC) methods in space for the numerical solution of the fractional integro-differential equation with a weakly singular kernel. We prove the stability of the numerical scheme and derive error estimates. The analysis presented allows variable time steps which, as will be shown, can efficiently be selected to match singularities in the solution induced by singularities in the kernel of the memory term. Finally, some numerical tests are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H., Xu, D., Zhou, J.: A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel. J. Comput. Appl. Math. 356, 152–163 (2019)

    Article  MathSciNet  Google Scholar 

  2. Xu, D.: On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel, I: Smooth initial data. Appl. Math. Comput. 58, 1–27 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Chen, C., Thomée, V., Wahlbin, B.: Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math. Comput. 58, 587–602 (1992)

    Article  MathSciNet  Google Scholar 

  4. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  Google Scholar 

  5. Larsson, S., Thomée, V., Wahlbin, B.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comput. Amer Math. Soci. 67, 45–71 (1998)

    Article  MathSciNet  Google Scholar 

  6. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)

    Article  MathSciNet  Google Scholar 

  7. Qiao, L., Xu, D.: Compact alternating direction implicit scheme for integro-differential equations of parabolic type. J. Sci. Comput. 76, 565–582 (2018)

    Article  MathSciNet  Google Scholar 

  8. Qiao, L., Xu, D.: Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation. Int. J. Comput. Math. 95, 1478–1493 (2017)

    Article  MathSciNet  Google Scholar 

  9. Qiao, L., Xu, D., Wang, Z., An, A D I: Difference scheme based on fractional trapezoidal rule for fractional integro-differential equation with a weakly singular kernel. Appl. Math. Comput. 354, 103–114 (2019)

    Article  MathSciNet  Google Scholar 

  10. Qiao, L., Xu, D.: BDF ADI Orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels. Comput. Math. Appl. 78, 3807–3820 (2019)

    Article  MathSciNet  Google Scholar 

  11. Zhang, Y., Sun, Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  Google Scholar 

  12. Bialecki, B., Fernandes, R.: Alternating direction implicit orthogonal spline collocation on some non-rectangular regions with inconsistent partitions. Numer. Algor. 74, 1083–1100 (2017)

    Article  MathSciNet  Google Scholar 

  13. Yang, X., Zhang, H., Xu, D.: Alternatting direction implicit OSC scheme for the two-dimensional fractional evolution equation with a weakly singular kernel. Acta Math. Sci. 38, 1689–1711 (2018)

    Article  Google Scholar 

  14. Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comp. 45, 417–437 (1985)

    Article  MathSciNet  Google Scholar 

  15. Chen, H., Xu, D., Peng, Y.: A second order BDF alternating direction implicit difference scheme for the two dimensional fractional evolution equation. Appl. Math. Model. 41, 54–67 (2017)

    Article  MathSciNet  Google Scholar 

  16. Pani, A., Fairweather, G., Fernandes, R.: Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal. 46, 344–364 (2008)

    Article  MathSciNet  Google Scholar 

  17. Pani, A., Fairweather, G., Fernandes, R.: Orthogonal spline collocation methods for partial integro-differential equations. SIAM J. Numer. Anal. 30, 248–276 (2010)

    Article  MathSciNet  Google Scholar 

  18. Bialecki, B., Fernandes, R.: An orthogonal spline collocation alternating direction implicit Crank-Nicolson method for linear parabolic problems on rectangles. SIAM J. Numer. Anal. 36, 1414–1434 (1999)

    Article  MathSciNet  Google Scholar 

  19. Fairweather, G., Yang, X., Xu, D., Zhang, H.: An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion wave equation. J. Sci. Comput. 65, 1217–1239 (2015)

    Article  MathSciNet  Google Scholar 

  20. Gao, G., Sun, Z.: Two alternating direction implicit difference schemes for solving the two-dimensional time distributed-order wave equations. J. Sci. Comput. 69, 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  21. Chen, S., Liu, F.: ADI-Euler and extrapolation methods for the two-dimensional advection-dispersion equation. J. Appl. Math. Comp. 26, 295–311 (2008)

    Article  MathSciNet  Google Scholar 

  22. Fairweather, G.: Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J. Numer. Anal. 31, 444–460 (1994)

    Article  MathSciNet  Google Scholar 

  23. López-Marcos, J.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MathSciNet  Google Scholar 

  24. Douglas, J., Jr.: Dupont, Collocation methods for parabolic equations in a single space variable, Lect. Notes Math., vol. 385. New York Springer (1974)

  25. Fernandes, R., Fairweather, G.: Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Methods Partial Differ. Equ. 9, 191–211 (1993)

    Article  MathSciNet  Google Scholar 

  26. Yang, X., Zhang, H., Xu, D.: WSGD-OSC Scheme for two-dimensional distributed order fractional reaction-diffusion equation. J. Sci. Comput. 76, 1502–1520 (2018)

    Article  MathSciNet  Google Scholar 

  27. Qiu, W., Xu, D., Guo, J.: A formally second-order BDF Sinc-collocation method for the Volterra integro-differential equation with a weakly singular kernel based on the double exponential transformation. Meth. Part Differ Equ. https://doi.org/10.1002/num.22703 (2020)

  28. Qiu, W., Xu, D., Guo, J.: The Crank-Nicolson-type Sinc-Galerkin method for the fourth-order partial integro-differential equation with a weakly singular kernel. Appl. Numer. Math. 159, 239–258 (2021)

    Article  MathSciNet  Google Scholar 

  29. Yi, L., Guo, B.: An h-p version of the continuous Petrov-Galerkin finite element method for Volterra integro-differential equations with smooth and non-smooth kernels. SIAM J. Numer. Anal. 53, 2677–2704 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wang, Z., Guo, Y., Yi, L.: An hp-version Legendre-Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels. Math. Comp. 86, 2285–2324 (2017)

    Article  MathSciNet  Google Scholar 

  31. Fairweather, G., Gladwell, I.: Algorithms for almost block diagonal linear systems. SIAM Rev. 46, 49–58 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leijie Qiao.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Xu, D. A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation. Adv Comput Math 47, 64 (2021). https://doi.org/10.1007/s10444-021-09884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09884-5

Keywords

Mathematics Subject Classification (2010)

Navigation