Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements | Advances in Computational Mathematics
Skip to main content

Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, an improved superconvergence analysis is presented for both the Crouzeix-Raviart element and the Morley element. The main idea of the analysis is to employ a discrete Helmholtz decomposition of the difference between the canonical interpolation and the finite element solution for the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element, respectively. This in particular allows for proving a full one-order superconvergence result for these two mixed finite elements. Finally, a full one-order superconvergence result of both the Crouzeix-Raviart element and the Morley element follows from their special relations with the first-order mixed Raviart–Thomas element and the mixed Hellan–Herrmann–Johnson element respectively. Those superconvergence results are also extended to mildly structured meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, DN, Brezzi, F: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. ESAIM Math. Model. Numer. Anal. 19(1), 7–32 (1985)

    Article  MathSciNet  Google Scholar 

  2. Douglas, N.A., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods I. The de Rham Complex. In: Compatible Spatial Discretizations, pp 23–46. Springer, New York (2006)

  3. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring I. Math. Comput. 47(175), 103–134 (1986)

    Article  MathSciNet  Google Scholar 

  5. Brandts, J.H.: Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68(3), 311–324 (1994)

    Article  MathSciNet  Google Scholar 

  6. Brandts, J.H.: Superconvergence for triangular order k = 1 Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods. Appl. Numer. Mathe. 34(1), 39–58 (2000)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S., Scott, R: The Mathematical Theory of Finite Element Methods, 3rd ed. Springer, New York (2008)

    Book  Google Scholar 

  8. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique

  9. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  Google Scholar 

  10. Brezzi, F., Raviart, P.-A.: Mixed finite element methods for 4th order elliptic equations. Topics in numerical analysis, III (Proc. Roy Irish Acad Conf) (1976)

  11. Chen, C., Huang, Y.: High accuracy theory of finite element methods (1995)

  12. Chen, H., Bo, L.: Superconvergence analysis and error expansion for the Wilson nonconforming finite element. Numer. Math. 69(2), 125–140 (2013)

    Article  MathSciNet  Google Scholar 

  13. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. Revue française d’automatique informatique recherche opérationnelle, Mathé,matique 7(R3), 33–75 (1973)

    Article  MathSciNet  Google Scholar 

  14. Douglas, J., Roberts, J.E.: Global estimates for mixed methods for second order elliptic problems. Math. Comput. 44(169), 39–52 (1985)

    Article  Google Scholar 

  15. Douglas, J., Wang, J.: Superconvergence of mixed finite element methods on rectangular domains. Calcolo 26(2-4), 121–133 (1989)

    Article  MathSciNet  Google Scholar 

  16. Durán, R.: Superconvergence for rectangular mixed finite elements. Numer. Math. 58(1), 287–298 (1990)

    Article  MathSciNet  Google Scholar 

  17. Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: By nonconforming finite element methods. J. Sci. Comput. 61, 196–221 (2014)

    Article  MathSciNet  Google Scholar 

  18. Hu, J., Ma, R.: The Enriched Crouzeix-Raviart elements are equivalent to the Raviart-Thomas elements. J. Sci. Comput. 63(2), 410–425 (2015)

    Article  MathSciNet  Google Scholar 

  19. Hu, J., Ma, R.: Superconvergence of both the Crouzeix-Raviart and Morley elements. Numer. Math. 132(3), 491–509 (2016)

    Article  MathSciNet  Google Scholar 

  20. Jun, H., Shi, Z.-C.: Constrained quadrilateral nonconforming rotated Q1 element. J. Comput. Math. 23(6), 561–586 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Yunqing, H., Xu, J.: Superconvergence of quadratic finite elements on mildly structured grids. Math. Comput. 77(263), 1253–1268 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Claes, J.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21(1), 43–62 (1973)

    Article  MathSciNet  Google Scholar 

  23. Krendl, W., Rafetseder, K., Zulehner, W.: A decomposition result for biharmonic problems and the Hellan-Herrmann-Johnson method. Electron. Trans. Numer. Anal. 45, 257–282 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Li, Y.: Global superconvergence of the lowest order mixed finite element on mildly structured meshes. SIAM J. Numer. Anal. 56(2), 792–815 (2018)

    Article  MathSciNet  Google Scholar 

  25. Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation. IMA Journal of Numerical Analysis, 25(1) (2005)

  26. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications. Lithos 118(3–4), 349–364 (1972)

    MATH  Google Scholar 

  27. Mao, S., Shi, Z.: High accuracy analysis of two nonconforming plate elements. Numer. Math. 111(3), 407–443 (2009)

    Article  MathSciNet  Google Scholar 

  28. Marini, L.D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (3), 493–496 (1985)

    Article  MathSciNet  Google Scholar 

  29. Ming, P., Shi, Z., Yun, X.: Superconvergence studies of quadrilateral nonconforming rotated Q1 elements. Int. J. Numer. Anal. Model. 3(3), 322–332 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aeronaut. Quarterly 19(2), 149–169 (1968)

    Article  Google Scholar 

  31. Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for second order elliptic problems, pp 292–315. Springer, Berlin (1977)

    Google Scholar 

Download references

Funding

The authors were supported by NSFC projects 11625101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Ma.

Additional information

Communicated by: Paul Houston

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Ma, L. & Ma, R. Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements. Adv Comput Math 47, 52 (2021). https://doi.org/10.1007/s10444-021-09874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09874-7

Keywords

Mathematics Subject Classification (2010)