An adaptive spectral graph wavelet method for PDEs on networks | Advances in Computational Mathematics Skip to main content
Log in

An adaptive spectral graph wavelet method for PDEs on networks

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we propose an adaptive spectral graph wavelet method to solve partial differential equations on network-like structures using so-called spectral graph wavelets. The concept of spectral graph wavelets is based on the discrete graph Laplacian. The beauty of the method lies in the fact that the same operator is used for the approximation of differential operators and for the construction of the spectral graph wavelets. Two test functions on different topologies of the network are considered in order to explain the features of the spectral graph wavelet (i.e., behavior of wavelet coefficients and reconstruction error). Subsequently, the method is applied to parabolic problems on networks with different topologies. The numerical results show that the method accurately captures the emergence of the localized patterns at all the scales (including the junction of the network) and the node arrangement is accordingly adapted. The convergence of the method is verified and the efficiency of the method is discussed in terms of CPU time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mehra, M., Kevlahan, N.K.-R.: An adaptive wavelet collocation method for the solution of partial differential equations on the sphere. J. Comput. Phys. 227, 5610–5632 (2008)

    Article  MathSciNet  Google Scholar 

  2. Goyal, K., Mehra, M.: An adaptive meshfree diffusion wavelet method for the solution of partial differential equations on the sphere. J. Comput. Phys. 272, 747–771 (2014)

    Article  MathSciNet  Google Scholar 

  3. Pokornyi, Y.V., Borovskikh, A.V.: Differential equations on network (geometric graphs). J. Math Sci. 119, 691–717 (2004)

    Article  MathSciNet  Google Scholar 

  4. Nicaise, S.: Polygonal interface problems, volume 39 of Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics]. Verlag Peter D. Lang, Frankfurt am Main (1993)

  5. Langnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modelling, analysis and control of dynamics elastic multi-link structures. BirkHauser (1994)

  6. Dáger, R., Zuazua, E.: Wave Propagation, Observation and Control in 1 − d Flexible Multi-structures, volume 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Brauer, U., Leugering, G.: On boundary observability estimates for semi-discretization of a dynamic network of elastic strings. Control. Cybern. 28, 421–427 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Leugering, G.: On the semi-discretization of optimal control problems for networks of elastic strings:global optimality systems aand domain decomposition. J. Comput. Appl. Math. 120, 133–157 (2000)

    Article  MathSciNet  Google Scholar 

  9. Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: On the analysis and control of hyperbolic systems associated with vibrating networks. Proc. Roy. Soc. Edinburgh Sect. A 124(1), 77–104 (1994)

    Article  MathSciNet  Google Scholar 

  10. Leugering, G., Schmidt, E.J.P.G.: On exact controllability of networks of nonlinear elastic strings in 3-dimensional space. Chin. Ann. Math. Ser. B 33(1), 33–60 (2012)

    Article  MathSciNet  Google Scholar 

  11. Leugering, G., Schmidt, E.J.P.G.: Boundary control of a vibrating plate with internal damping. Math Methods Appl. Sci. 11(5), 573–586 (1989)

    Article  MathSciNet  Google Scholar 

  12. Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modelling of dynamic networks of thin thermoelastic beams. Math Methods Appl. Sci. 16(5), 327–358 (1993)

    Article  MathSciNet  Google Scholar 

  13. Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Control of planar networks of Timoshenko beams. SIAM J. Control Optim. 31(3), 780–811 (1993)

    Article  MathSciNet  Google Scholar 

  14. Leugering, G., Walther, M.: Element based model reduction for parameter dependent parabolic pdes on networks (2017)

  15. Mehandiratta, V., Mehra M., Leugering, G.: Fractional optimal control problems on a star graph: optimality system and numerical solution. Mathematical Control and Related Fields. https://doi.org/10.3934/mcrf.2020033 (2020)

  16. Mehandiratta, V., Mehra M.: A difference scheme for the time-fractional diffusion equation on a metric star graph. Appl. Numer. Math. 158, 152–163 (2020)

    Article  MathSciNet  Google Scholar 

  17. Mehandiratta, V., Mehra M., Leugering, G.: Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph. J Math. Anal. Appl. 447, 1243–1264 (2019)

    Article  MathSciNet  Google Scholar 

  18. Leugering, G., Schmidt, E.J.P.G.: On the modelling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41(1), 164–180 (2002)

    Article  MathSciNet  Google Scholar 

  19. Gugat, M., Leugering, G., Schittkowski, K., Schmidt, E.J.P.G.: Modelling, stabilization, and control of flow in networks of open channels. In: Online Optimization of Large Scale Systems, pp 251–270. Springer, Berlin (2001)

  20. Gugat, M., Leugering, G., Schmidt, E.J.P.G.: Global controllability between steady supercritical flows in channel networks. Math Methods Appl. Sci. 27(7), 781–802 (2004)

    Article  MathSciNet  Google Scholar 

  21. Yoshioka, H., Unami, K., Fujihara, M.: Burgers type equation models on connected graphs and their application to open channel hydraulics (2014)

  22. Liandrat, J., Tchamitchian, P.: Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation. Nasa contactor report 187480: Icase report no. 90-83 (1990)

  23. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations. Math Comput. 70, 27–75 (2001)

    Article  MathSciNet  Google Scholar 

  24. Vasilyev, O.V., Bowman, C.: Second generation wavelet collocation method for the solution of partial differential equations. J. Comput. Phys. 165, 660–693 (2000)

    Article  MathSciNet  Google Scholar 

  25. Mehra, M., Kumar, B.V.R.: Time-accurate solution of advection-diffusion problems by wavelet Taylor Galerkin method. Comm. Numer. Methods Eng. 21, 313–326 (2005)

    Article  MathSciNet  Google Scholar 

  26. Dahmen, W., Schneider, R.: Wavelets on manifolds i: Construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

    Article  MathSciNet  Google Scholar 

  27. Tabacco, A., Canuto, C., Urban, K.: The wavelet element method. part i: Construction and analysis. Appl. Comput. Harm. Anal. 6, 1–52 (1999)

    Article  Google Scholar 

  28. Dahmen, W, Stevenson, R.: Element-by-element contruction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal. 37, 319–352 (1999)

    Article  MathSciNet  Google Scholar 

  29. Freeden, W., Schreiner, M.: Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere. Constr. Approx. 14, 493–515 (1997)

    Article  Google Scholar 

  30. Mehra, M., Kevlahan, N.K.-R.: An adaptive multilevel wavelet solver for elliptic equations on an optimal spherical geodesic grid. SIAM J. Sci. Comput. 30(6), 3073–3086 (2008)

    Article  MathSciNet  Google Scholar 

  31. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21, 53–94 (2006)

    Article  MathSciNet  Google Scholar 

  32. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30, 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  33. Goyal, K., Mehra, M.: An adaptive meshfree spectral graph wavelet method for partial differential equations. Appl. Numer. Math. 113, 168–185 (2017)

    Article  MathSciNet  Google Scholar 

  34. Shukla, A., Mehra, M., Leugering, G.: A fast adaptive spectral graph wavelet method for the viscous burgers’equation on a star-shaped connected graph. Math. Meth. Appl. Sci. 43, 7595–7614 (2019)

    Article  MathSciNet  Google Scholar 

  35. Shukla, A., Mehra, M.: Spectral graph wavelet regularization and adaptive wavelet for the backward heat conduction problem. Inverse Prob. Sci. Eng., 1–32 (2020)

  36. Zhang, Lin, Ouyang, Jie, Wang, Xiaoxia, Zhang, X.: Variational multiscale element–free Galerkin’s method for 2d Burger’s equation. J. Comput. Phys. 229, 7147–7161 (2010)

    Article  MathSciNet  Google Scholar 

  37. Goyal, K., Mehra, M.: A fast adaptive diffusion wavelet method for Burgers equations. Comput. Math. Appl. 14, 568–577 (2014)

    Article  MathSciNet  Google Scholar 

  38. Jameson, L.: A wavelet-optimized, very high order adaptive grid and order numerical method. SIAM J. Sci. Comput. 19, 1980–2013 (1998)

    Article  MathSciNet  Google Scholar 

  39. Alam, J.M., Kevlahan, N.K.-R., Vasilyev, O.V.: Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations. J. Comput. Phys. 214, 829–857 (2006)

    Article  MathSciNet  Google Scholar 

  40. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 482–512 (1984)

    Article  MathSciNet  Google Scholar 

  41. Baeza, A., Mulet, P.: Adaptive mesh refinement tecniques for high–order shock capturing schemes for multi–dimensional hydrodynamic simulations. Int. J. Numer. Meth. Fluids 52, 455–471 (2006)

    Article  Google Scholar 

  42. Davis, S.F., Flaherty, J.E.: An adaptive finite element method for initial–boundary value problems for partial differential equations. SIAM J. Sci. Stat. Comput. 3, 6–27 (1982)

    Article  MathSciNet  Google Scholar 

  43. Hieber, S.E., Koumoutsakos, P.: A lagrangian particle level set method. J. Comput. Phys. 210, 342–367 (2005)

    Article  MathSciNet  Google Scholar 

  44. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

Download references

Acknowledgments

The authors like to thank the anonymous reviewers whose comments/suggestions helped improve and clarify this manuscript. At FAU coordination of the program via the “Central Institute for Scientific Computing” is appreciated.

Funding

The authors acknowledge the support of this work by the Indo-German exchange program “Multiscale Modelling, Simulation and optimization for energy, Advanced Materials and Manufacturing” funded by UGC (India) and DAAD (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Mehra.

Additional information

Communicated by: Robert Schaback

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehra, M., Shukla, A. & Leugering, G. An adaptive spectral graph wavelet method for PDEs on networks. Adv Comput Math 47, 12 (2021). https://doi.org/10.1007/s10444-020-09824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09824-9

Keywords

Mathematics Subject Classification (2010)

Navigation