Abstract
In this paper, we express and analyze mixed discontinuous Galerkin(DG) methods of biharmonic eigenvalue problems as well as present the error analysis for them. The analysis consists of two parts. First, we propose a residual-based a posteriori error estimator in the approximate eigenfunctions and eigenvalues. The error in the eigenfunctions is measured both in the L2 and DG (energy-like) norms. In addition, we prove that if the error estimator converges to zero, then the distance of the computed eigenfunction from the true eigenspace also converges to zero, and so, the computed eigenvalue converges to a true eigenvalue. Next, we establish an a priori error estimate with the optimal convergence order both in the L2 and DG norms. We show that the methods can retain the same convergence properties they enjoy in the case of source problems.
Similar content being viewed by others
References
Antonietti, P.F., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195(25-28), 3483–3503 (2006)
Babuska, I., Osborn, J.: Finite element Galerkin approximation of the eigenvalues and eigenfunctions of selfadjoint problems. Math. Comp. 52(186), 275–297 (1989)
Canuto, C.: Eigenvalue approximation by mixed Methods. R.A.I.R.O. Anal Numer. 12(1), 27–50 (1978)
Canuto, C.: A hybrid finite element method to compute the free vibration frequencies of a clamped plate. R.A.I.R.O. Anal. Numer. 15(2), 101–118 (1981)
Duran, R.G., Padra, C., Rodriguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Model. Methods Appl. Sci. 13(08), 1219–1229 (2003)
Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 2. Error estimates for the Galerkin method. R.A.I.R.O. Anal. Numer. 12(3), 113–119 (1978)
Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 1. The problem of convergence. R.A.I.R.O. Anal. Numer. 12(2), 97–112 (1978)
Giani, S., Graham, I.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)
Giani, S., Hall, E.J.C.: An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems. M3AS 22(10), 501–534 (2012)
Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37(2), 139–161 (2008)
Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14(2), 399–414 (1978)
Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self- adjoint eigenvalue problems. SIAM J. Numer Anal. 38(2), 608–625 (2000)
Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36(154), 427–453 (1981)
Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. Walter de Gruyter, Berlin (1994)
Rannacher, R.: Nonconforming finite element method for eigenvalue problems in linear plate theory. Numer. Math. 33(1), 23–42 (1979)
Tran, M.M.: Finite element spectral approximation with numerical integration for the biharmonic eigenvalue problem. JGRMA 2(3), 102–142 (2014)
Xiong, C., Becker, R., Luo, F., Ma, X.: A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems. NMPDE 33(1), 318–353 (2017)
Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70(233), 17–25 (2001)
Bjrstad, P.E., Tjstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63(2), 97–107 (1999)
Brenner, S.C., Monk, P., Sun, J.: C 0 Interior penalty Galerkin method for biharmonic eigenvalue problems. In: Kirby, R., Berzins, M., Hesthaven, J. (eds.) Spectral and high order methods for partial differential equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol. 106. Springer, Cham (2014)
Wieners, C.: Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing 59(1), 29–41 (1997)
Babuska, I., Osborn, J.: Eigenvalue problems. In: Lions, P. G., Ciarlet, P.G. (eds.) , vol. II, pp 641–787. Finite Element Methods (Part 1), North-Holland (1991)
Grisvard, P.: Singularities in boundary problems. MASSON and Springer-Verlag (1985)
Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)
Sun, J., Zhou, A.: Finite element methods for eigenvalue problems. CRC Press, Boca Raton (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Ilaria Perugia
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
subject is supported partially by NSFC No. 10871218.
Rights and permissions
About this article
Cite this article
Wang, L., Xiong, C., Wu, H. et al. A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv Comput Math 45, 2623–2646 (2019). https://doi.org/10.1007/s10444-019-09689-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-019-09689-7