A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems | Advances in Computational Mathematics Skip to main content
Log in

A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we express and analyze mixed discontinuous Galerkin(DG) methods of biharmonic eigenvalue problems as well as present the error analysis for them. The analysis consists of two parts. First, we propose a residual-based a posteriori error estimator in the approximate eigenfunctions and eigenvalues. The error in the eigenfunctions is measured both in the L2 and DG (energy-like) norms. In addition, we prove that if the error estimator converges to zero, then the distance of the computed eigenfunction from the true eigenspace also converges to zero, and so, the computed eigenvalue converges to a true eigenvalue. Next, we establish an a priori error estimate with the optimal convergence order both in the L2 and DG norms. We show that the methods can retain the same convergence properties they enjoy in the case of source problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonietti, P.F., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195(25-28), 3483–3503 (2006)

    Article  MathSciNet  Google Scholar 

  2. Babuska, I., Osborn, J.: Finite element Galerkin approximation of the eigenvalues and eigenfunctions of selfadjoint problems. Math. Comp. 52(186), 275–297 (1989)

    Article  MathSciNet  Google Scholar 

  3. Canuto, C.: Eigenvalue approximation by mixed Methods. R.A.I.R.O. Anal Numer. 12(1), 27–50 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Canuto, C.: A hybrid finite element method to compute the free vibration frequencies of a clamped plate. R.A.I.R.O. Anal. Numer. 15(2), 101–118 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Duran, R.G., Padra, C., Rodriguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Model. Methods Appl. Sci. 13(08), 1219–1229 (2003)

    Article  MathSciNet  Google Scholar 

  6. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 2. Error estimates for the Galerkin method. R.A.I.R.O. Anal. Numer. 12(3), 113–119 (1978)

    MATH  Google Scholar 

  7. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 1. The problem of convergence. R.A.I.R.O. Anal. Numer. 12(2), 97–112 (1978)

    MATH  Google Scholar 

  8. Giani, S., Graham, I.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009)

    Article  MathSciNet  Google Scholar 

  9. Giani, S., Hall, E.J.C.: An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems. M3AS 22(10), 501–534 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37(2), 139–161 (2008)

    Article  MathSciNet  Google Scholar 

  11. Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14(2), 399–414 (1978)

    Article  MathSciNet  Google Scholar 

  12. Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self- adjoint eigenvalue problems. SIAM J. Numer Anal. 38(2), 608–625 (2000)

    Article  MathSciNet  Google Scholar 

  13. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36(154), 427–453 (1981)

    Article  MathSciNet  Google Scholar 

  14. Nazarov, S.A., Plamenevsky, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. Walter de Gruyter, Berlin (1994)

    Book  Google Scholar 

  15. Rannacher, R.: Nonconforming finite element method for eigenvalue problems in linear plate theory. Numer. Math. 33(1), 23–42 (1979)

    Article  MathSciNet  Google Scholar 

  16. Tran, M.M.: Finite element spectral approximation with numerical integration for the biharmonic eigenvalue problem. JGRMA 2(3), 102–142 (2014)

    Google Scholar 

  17. Xiong, C., Becker, R., Luo, F., Ma, X.: A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems. NMPDE 33(1), 318–353 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70(233), 17–25 (2001)

    Article  MathSciNet  Google Scholar 

  19. Bjrstad, P.E., Tjstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63(2), 97–107 (1999)

    Article  MathSciNet  Google Scholar 

  20. Brenner, S.C., Monk, P., Sun, J.: C 0 Interior penalty Galerkin method for biharmonic eigenvalue problems. In: Kirby, R., Berzins, M., Hesthaven, J. (eds.) Spectral and high order methods for partial differential equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol. 106. Springer, Cham (2014)

  21. Wieners, C.: Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing 59(1), 29–41 (1997)

    Article  MathSciNet  Google Scholar 

  22. Babuska, I., Osborn, J.: Eigenvalue problems. In: Lions, P. G., Ciarlet, P.G. (eds.) , vol. II, pp 641–787. Finite Element Methods (Part 1), North-Holland (1991)

  23. Grisvard, P.: Singularities in boundary problems. MASSON and Springer-Verlag (1985)

  24. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  Google Scholar 

  25. Sun, J., Zhou, A.: Finite element methods for eigenvalue problems. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Xiong.

Additional information

Communicated by: Ilaria Perugia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

subject is supported partially by NSFC No. 10871218.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xiong, C., Wu, H. et al. A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv Comput Math 45, 2623–2646 (2019). https://doi.org/10.1007/s10444-019-09689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09689-7

Keywords

Mathematics Subject Classification (2010)

Navigation