Abstract
We describe a collocation method with weighted extended B–splines (WEB–splines) for arbitrary bounded multidimensional domains, considering Poisson’s equation as a typical model problem. By slightly modifying the B–spline classification for the WEB–basis, the centers of the supports of inner B–splines can be used as collocation points. This resolves the mismatch between the number of basis functions and interpolation conditions, already present in classical univariate schemes, in a simple fashion. Collocation with WEB–splines is particularly easy to implement when the domain boundary can be represented as zero set of a weight function; sample programs are provided on the website http://www.web-spline.de. In contrast to standard finite element methods, no mesh generation and numerical integration is required, regardless of the geometric shape of the domain. As a consequence, the system equations can be compiled very efficiently. Moreover, numerical tests confirm that increasing the B–spline degree yields highly accurate approximations already on relatively coarse grids. Compared with Ritz-Galerkin methods, the observed convergence rates are decreased by 1 or 2 when using splines of odd or even order, respectively. This drawback, however, is outweighed by a substantially smaller bandwidth of collocation matrices.
Similar content being viewed by others
References
Apprich, C., Höllig, K., Hörner, J., Keller, A., Nava–Yazdani, E.: Finite element approximation with hierarchical B–splines In: Boissonnat, J.D., et al. (eds.) Curves and Surfaces 2014, LNCS 9213, pp 1–15. Springer (2015)
Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation methods. Math. Mod. Meth. Appl. Sci. 20, 2075–2107 (2010)
Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation for elastostatics and explicit dynamics. Comput. Methods Appl. Mech. Engrg. 249/252, 2–14 (2012)
Bajaj, C., Bettadapura, R., Lei, N., Mollere, A., Peng, C., Rand, A.: Constructing A-spline weight functions for Stable WEB–spline finite element methods. In: Proc. ACM Symposium on Solid and Physical Modeling, SPM 2010, G. Elber et al. (eds.), ACM (2010), 153–158
van Blerk, J.J., Botha, J.F.: Numerical solution of partial differential equations on curved domains by collocation, Numer. Methods Partial Differential Equations 9, 357–371 (1993)
de Boor, C.: The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines. Dissertation, University of Michigan (1966)
de Boor, C.: On Calculating with B–Splines. J. Approx. Theory 6, 50–62 (1972)
de Boor, C.: A Practical Guide to Splines. Springer-Verlag, New York (1978)
de Boor, C, Swartz, B.: Collocation at Gaussian Points. SIAM J. Numer. Anal. 10, 582–606 (1973)
Cavendish, J.C.: A collocation method for elliptic and parabolic boundary–value problems using cubic splines. Dissertation, University of Pittsburgh (1972)
Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley (2009)
Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)
Fraser, R.A., Jones, W.N.P., Skan, S.W.: Approximations to functions and to the solutions of differential equations. GB Aeronautical Research Committee, ARC Technical Report (1937)
Groisser, D., Peters, J.: Matched G k-constructions always yield C k-continuous isogeometric elements. Comput. Aided Geom. Design 34, 67–72 (2015)
Höllig, K.: Finite Element Methods with B–Splines. SIAM (2003)
Höllig, K., Hörner, J.: Approximation and Modeling with B–Splines. SIAM (2013)
Höllig, K., Hörner, J.: Programming Finite Element Methods with B–Splines. Comput. Math. Appl. 70, 1441–1456 (2015)
Höllig, K., Hörner, J., Hoffacker, A.: Finite element analysis with B–splines: weighted and isogeometric methods. In: Boissonnat, J.D, et al. (eds.) Curves and Surfaces 2010, LNCS 6920, pp 330–350. Springer (2012)
Höllig, K., Reif, U., Wipper, J.: Weighted extended B–spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)
Ito, T.: A collocation method for boundary–value problems using spline functions. Dissertation, Brown University (1972)
Kantorovich, L.V.: Sur une méthode de resolution approchée d’equations differentielles aux derivées partielles. C. R. Acad. Sci. URSS 2, 534–536 (1934)
Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Interscience Publishers (1958)
Karpilovskaya, E.B.: On convergence of an interpolation method for ordinary differential equations (Russian). Uspekhi Mat. Nauk. 8, 111–118 (1953)
Kraft, R.: Adaptive und linear unabhängige Multilevel B–Splines und ihre Anwendungen. Dissertation, University of Stuttgart (1998)
Mokris, D., Jüttler, B.: TDHB–splines: The truncated decoupled basis of hierarchical tensor–product splines. CAGD 31, 531–544 (2014)
Percell, P., Wheeler, M.F.: A C 1 finite element collocation method for elliptic equations. SIAM J. Numer. Anal. 17, 605–622 (1980)
Piegl, L., Tiller, W.: The NURBS Book. Springer (1997)
Prenter, P.M., Russell, R.D.: Orthogonal collocation for elliptic partial differential equations. SIAM J. Numer. Anal. 13, 923–939 (1976)
Russel, R. D., Shampine, L.F.: A collocation method for boundary value problems, Numer. Math. 19, 1–28 (1972)
Rvachev, V.L.: Method of R-functions in boundary-value problems. Int. Appl. Mech. 11, 345–354 (1975)
Rvachev, V.L., Sheiko, T.I.: R-functions in boundary value problems in mechanics. Appl. Mech. Rev. 48, 151–188 (1995)
Rvachev, V.L., Sheiko, T.I., Shapiro, V., Tsukanov, I.: On completeness of RFM solution structures. Comput. Mech. 25, 305–316 (2000)
Schillinger, D., Evans, J.A., Reali, A., Scott, M.A., Hughes, T.J.R.: Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Meth. Appl. Mech. Engrg. 267, 170–232 (2013)
Schumaker, L.L.: Spline Functions: Basic Theory. Wiley (1980)
Shapiro, V.: Semi–analytic geometry with R–functions. Acta Numer. 16, 239–303 (2007)
Vainikko, G.M.: On convergence and stability of the collocation method. Diff. Equ. 1, 186–194 (1965)
Wright, K.: Chebyshev collocation methods for ordinary differential equations. Comput. J. 6, 358–365 (1963/1964)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: T. Lyche
Rights and permissions
About this article
Cite this article
Apprich, C., Höllig, K., Hörner, J. et al. Collocation with WEB–Splines. Adv Comput Math 42, 823–842 (2016). https://doi.org/10.1007/s10444-015-9444-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-015-9444-x