Collocation with WEB–Splines | Advances in Computational Mathematics Skip to main content
Log in

Collocation with WEB–Splines

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We describe a collocation method with weighted extended B–splines (WEB–splines) for arbitrary bounded multidimensional domains, considering Poisson’s equation as a typical model problem. By slightly modifying the B–spline classification for the WEB–basis, the centers of the supports of inner B–splines can be used as collocation points. This resolves the mismatch between the number of basis functions and interpolation conditions, already present in classical univariate schemes, in a simple fashion. Collocation with WEB–splines is particularly easy to implement when the domain boundary can be represented as zero set of a weight function; sample programs are provided on the website http://www.web-spline.de. In contrast to standard finite element methods, no mesh generation and numerical integration is required, regardless of the geometric shape of the domain. As a consequence, the system equations can be compiled very efficiently. Moreover, numerical tests confirm that increasing the B–spline degree yields highly accurate approximations already on relatively coarse grids. Compared with Ritz-Galerkin methods, the observed convergence rates are decreased by 1 or 2 when using splines of odd or even order, respectively. This drawback, however, is outweighed by a substantially smaller bandwidth of collocation matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apprich, C., Höllig, K., Hörner, J., Keller, A., Nava–Yazdani, E.: Finite element approximation with hierarchical B–splines In: Boissonnat, J.D., et al. (eds.) Curves and Surfaces 2014, LNCS 9213, pp 1–15. Springer (2015)

  2. Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation methods. Math. Mod. Meth. Appl. Sci. 20, 2075–2107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation for elastostatics and explicit dynamics. Comput. Methods Appl. Mech. Engrg. 249/252, 2–14 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bajaj, C., Bettadapura, R., Lei, N., Mollere, A., Peng, C., Rand, A.: Constructing A-spline weight functions for Stable WEB–spline finite element methods. In: Proc. ACM Symposium on Solid and Physical Modeling, SPM 2010, G. Elber et al. (eds.), ACM (2010), 153–158

  5. van Blerk, J.J., Botha, J.F.: Numerical solution of partial differential equations on curved domains by collocation, Numer. Methods Partial Differential Equations 9, 357–371 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Boor, C.: The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines. Dissertation, University of Michigan (1966)

  7. de Boor, C.: On Calculating with B–Splines. J. Approx. Theory 6, 50–62 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Boor, C.: A Practical Guide to Splines. Springer-Verlag, New York (1978)

    Book  MATH  Google Scholar 

  9. de Boor, C, Swartz, B.: Collocation at Gaussian Points. SIAM J. Numer. Anal. 10, 582–606 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cavendish, J.C.: A collocation method for elliptic and parabolic boundary–value problems using cubic splines. Dissertation, University of Pittsburgh (1972)

  11. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley (2009)

  12. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Design 30, 331–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fraser, R.A., Jones, W.N.P., Skan, S.W.: Approximations to functions and to the solutions of differential equations. GB Aeronautical Research Committee, ARC Technical Report (1937)

    MATH  Google Scholar 

  14. Groisser, D., Peters, J.: Matched G k-constructions always yield C k-continuous isogeometric elements. Comput. Aided Geom. Design 34, 67–72 (2015)

    Article  MathSciNet  Google Scholar 

  15. Höllig, K.: Finite Element Methods with B–Splines. SIAM (2003)

  16. Höllig, K., Hörner, J.: Approximation and Modeling with B–Splines. SIAM (2013)

  17. Höllig, K., Hörner, J.: Programming Finite Element Methods with B–Splines. Comput. Math. Appl. 70, 1441–1456 (2015)

    Article  MathSciNet  Google Scholar 

  18. Höllig, K., Hörner, J., Hoffacker, A.: Finite element analysis with B–splines: weighted and isogeometric methods. In: Boissonnat, J.D, et al. (eds.) Curves and Surfaces 2010, LNCS 6920, pp 330–350. Springer (2012)

  19. Höllig, K., Reif, U., Wipper, J.: Weighted extended B–spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 442–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ito, T.: A collocation method for boundary–value problems using spline functions. Dissertation, Brown University (1972)

  22. Kantorovich, L.V.: Sur une méthode de resolution approchée d’equations differentielles aux derivées partielles. C. R. Acad. Sci. URSS 2, 534–536 (1934)

    MATH  Google Scholar 

  23. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Interscience Publishers (1958)

  24. Karpilovskaya, E.B.: On convergence of an interpolation method for ordinary differential equations (Russian). Uspekhi Mat. Nauk. 8, 111–118 (1953)

    MathSciNet  Google Scholar 

  25. Kraft, R.: Adaptive und linear unabhängige Multilevel B–Splines und ihre Anwendungen. Dissertation, University of Stuttgart (1998)

  26. Mokris, D., Jüttler, B.: TDHB–splines: The truncated decoupled basis of hierarchical tensor–product splines. CAGD 31, 531–544 (2014)

    MathSciNet  Google Scholar 

  27. Percell, P., Wheeler, M.F.: A C 1 finite element collocation method for elliptic equations. SIAM J. Numer. Anal. 17, 605–622 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piegl, L., Tiller, W.: The NURBS Book. Springer (1997)

  29. Prenter, P.M., Russell, R.D.: Orthogonal collocation for elliptic partial differential equations. SIAM J. Numer. Anal. 13, 923–939 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Russel, R. D., Shampine, L.F.: A collocation method for boundary value problems, Numer. Math. 19, 1–28 (1972)

    MathSciNet  Google Scholar 

  31. Rvachev, V.L.: Method of R-functions in boundary-value problems. Int. Appl. Mech. 11, 345–354 (1975)

    MathSciNet  MATH  Google Scholar 

  32. Rvachev, V.L., Sheiko, T.I.: R-functions in boundary value problems in mechanics. Appl. Mech. Rev. 48, 151–188 (1995)

    Article  Google Scholar 

  33. Rvachev, V.L., Sheiko, T.I., Shapiro, V., Tsukanov, I.: On completeness of RFM solution structures. Comput. Mech. 25, 305–316 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schillinger, D., Evans, J.A., Reali, A., Scott, M.A., Hughes, T.J.R.: Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Meth. Appl. Mech. Engrg. 267, 170–232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley (1980)

  36. Shapiro, V.: Semi–analytic geometry with R–functions. Acta Numer. 16, 239–303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vainikko, G.M.: On convergence and stability of the collocation method. Diff. Equ. 1, 186–194 (1965)

    MathSciNet  MATH  Google Scholar 

  38. Wright, K.: Chebyshev collocation methods for ordinary differential equations. Comput. J. 6, 358–365 (1963/1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Reif.

Additional information

Communicated by: T. Lyche

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apprich, C., Höllig, K., Hörner, J. et al. Collocation with WEB–Splines. Adv Comput Math 42, 823–842 (2016). https://doi.org/10.1007/s10444-015-9444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9444-x

Keywords

Mathematics Subject Classification (2010)

Navigation