Extensions of the Justen–Ramlau blind deconvolution method | Advances in Computational Mathematics Skip to main content
Log in

Extensions of the Justen–Ramlau blind deconvolution method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Blind deconvolution problems arise in many image restoration applications. Most available blind deconvolution methods are iterative. Recently, Justen and Ramlau proposed a novel non-iterative blind deconvolution method. The method was derived under the assumption of periodic boundary conditions. These boundary conditions may introduce oscillatory artifacts into the computed restoration. We describe extensions of the Justen–Ramlau method that allow the use of Neumann and antireflective boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aricò, A., Donatelli, M., Nagy, J., Serra-Capizzano, S.: The anti-reflective transform and regularization by filtering. In: Bhattacharyya, S., Chan, R., Van Dooren, P., Olshevsky, V., Routray, A. (eds.) Numerical Linear Algebra in Signals, Systems, and Control. Lecture Notes in Electrical Engineering, vol. 80, pp. 1–21. Springer, New York (2012)

    Chapter  Google Scholar 

  2. Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its application. Opt. Lett. 13, 547–549 (1988)

    Article  Google Scholar 

  3. Campisi, P., Egiazarian, K. (eds.): Blind Deconvolution. Theory and Applications. CRC Press (2007)

  4. Carasso, A.S.: False characteristic functions other pathologies in variational blind deconvolution. A method of recovery. SIAM J. Appl. Math. 70, 1097–1119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.F.,Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

  6. Chan, T.F., Wong, C.K.: Convergence of the alternating minimization algorithm for blind deconvolution. Linear Algebra Appl. 316, 259–285 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, Y.-W., Nagy, J.G.: An efficient computational approach for multiframe blind deconvolution. J. Comput. Appl. Math. 236, 2112–2125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  9. He, L., Marquina, A., Osher, S.J.: Blind deconvolution using TV regularization and Bregman iteration. Int. J. Imaging Syst. Technol. 15, 74–83 (2005)

    Article  Google Scholar 

  10. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  11. Ji, H., Li, J., Shen, Z., Wang, K.: Image deconvolution using a characterization of sharp images in wavelet domain. Appl. Comput. Harmon. Anal. 32, 295–304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Justen, L., Ramlau, R.: A non-iterative regularization approach to blind deconvolution. Inverse Probl. 22, 771–800 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971. IEEE, CVPR (2009)

  14. Liao, B.H., Ng, M.: Blind deconvolution using generalized cross validation approach to regularization parameter estimation. IEEE Trans. Image Process. 21, 562–572 (2012)

    Article  MathSciNet  Google Scholar 

  15. Molina, R., Mateos, J., Katsaggelo, A.K.: Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Trans. Image Process. 15, 3715–3727 (2006)

    Article  MathSciNet  Google Scholar 

  16. Ng, M., Chan, R., Tang, W.-C.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ng, M.K., Plemmons, R.: Blind deconvolution and structured matrix computations with applications to array imaging. In: Campisi, P. (ed.) Blind Deconvolution: Theory and Applications, pp. 377–418. CRC Press, Egiazarian, K. (2007)

    Chapter  Google Scholar 

  18. Ng, M.K., Plemmons, R., Qiao, S.: Regularization of RIF blind image deconvolution. IEEE Trans. Image Process. 9, 1130–1134 (2000)

    Article  Google Scholar 

  19. Serra-Capizzano, S.: A note on antireflective boundary conditions and fast deblurring models. SIAM J. Sci. Comput. 25, 1307–1325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spaletta, G., Caucci, L.: Constrained iterations for blind deconvolution and convexity issues. J. Comput. Appl. Math. 197, 29–43 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Additional information

Research by L. Reichel was supported in part by NSF grant DMS-1115385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hearn, T.A., Reichel, L. Extensions of the Justen–Ramlau blind deconvolution method. Adv Comput Math 39, 465–491 (2013). https://doi.org/10.1007/s10444-012-9290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9290-z

Keywords

Mathematics Subject Classifications (2010)

Navigation